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Introduction Eulerian and Lagrangian formalisms

Eulerian formalism (spatial description)

@ fixed referential attached to the observer
@ fixed observation zone through the fluid flows

Lagrangian formalism (material description)

@ moving referential attached to the material
@ observation zone moved and deformed as the fluid flows

Lagrangian formalism advantages

@ adapted to problems undergoing large deformations
@ naturally tracks interfaces in multi-material flows
@ avoids the numerical diffusion of the convection terms

Lagrangian formalism drawbacks
@ Robustness issue in the case of strong vorticity or shear flows

= ALE method (Arbitrary Lagrangian-Eulerian)
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Gas dynamics system of equations

e Gas dynamics system of equations
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Gas dynamics system of equations Eulerian description

Definitions
@ p the fluid density
@ u the fluid velocity
@ e the fluid specific total energy
@ p the fluid pressure
@ ¢ = e — Ju? the fluid specific internal energy

Euler equations

8t+vx .pu=0
0

°%+VX (puu+ply)=0
0

o%Jer (pue+pu)=0

A\

Thermodynamical closure
@ p=p(p,e) Equation of state
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Gas dynamics system of equations Lagrangian descriptions

Moving referential

@ X s the position of a point of the fluid in its initial configuration
@ x(X,t) isthe actual position of this point, moved by the fluid flow

Trajectory equation

° w = u(x(X,t),1)

@ x(X,0)=X

A\

Material derivative
@ f(x,t) isasmooth fluid variable

o df(x,t) Of(x,t)
dat ot

+u.Vif(x,t)

)\
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Definitions

@ 7 =1 the specific volume

P
= (r,u,e)! the solution vector

° F(U) - (_u’ ]]'(1)p’ ]-(2)p, 1(3)p; pu)t Whel‘e (I) = ( il 123 5/3)t
@ a=a(p,e) the sound speed

Updated Lagrangian formulation

) % +Vx.F(U)=0 Moving configuration

Non-conservative formulation
dU oU oU au

© pr TAxU) 5o +A/(U) 5= 3y +A (V) o =

@ Ap=Anx+An,+A;n; with n a unit vector
@ \NU)={-pa, 0,pa} the eigenvalues of A,(U)

Frangois Vilar (IMAG) Cell-centered Lagrangian schemes September 13th, 2017 5/36



Gas dynamics system of equations Total Lagrangian descriptions

Deformation gradient tensor

0 J=Vxx Jacobian of the fluid flow
@ |J| =detd >0 Positive control volume
@ Vx.(JJ™) =0 Piola compatibility condition

® Lo P’ dV = fuppdv
© oy Pdv = fyorNIdV
o p|=p°

Total Lagrangian formulation

° po% L\t o (|J|J*1 F(U)) =0 Fixed configuration
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First-order numerical scheme for the 2D gas dynamics

e First-order numerical scheme for the 2D gas dynamics
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First-order numerical scheme for the 2D gas dynamics Finite volumes scheme

Définitions
@ 0=t"<t"<...<tN=T apartition of the time domain [0, T]
® W% =J,y, w@ apartition of the initial domain «°
@ w? the image of w2 at time t" through the fluid flow
@ m. the constant mass of cell w,
@ U2 = (72, ul, el)t the discrete solution

(a) Straight line edges (b) Conical edges (c) Polynomial edges

Figure: Generic polygonal cell
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First-order numerical scheme for the 2D gas dynamics Finite volumes scheme

Integration

n p—
oUg+1:UQ—At/ F.nds
me Owe

@ Integration of the cell boundary term (analytically, quadrature, . ..)

General first-order finite volumes scheme

n+1 n At" e
o UC = UC - Z Fqc . /qcnqc
© geQc
® Fge = (—Ug, 1(1) Pye: 1(2) Pye Pye Ug)'  Numarical flux at point g

n+1 _ yn nj
@ Xg =Xg+At"uq

Definitions
@ O, the chosen control point set of cell w,
@ /cnge some normals to be defined
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First-order numerical scheme for the 2D gas dynamics Nodal solver

@ F, islocal to the cell we
@ Only w4 =g needs to be continuous, to advect the mesh
@ Loss of the scheme conservation?

(a) Face control point (b) Grid node

Figure: Points neighboring cell sets

1D numerical fluxes
° ﬁqc = ,Dg - EOIC (Hq - ug) « Ngc
@ Z,c >0 local approximation of the acoustic impedance
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First-order numerical scheme for the 2D gas dynamics Nodal solver

Conservation

° > mUit' =) m.U;+BC ?
c Cc

@ For sake of simplicity, we consider BC =0

@ Necessary condition: » ) "~ By lgehge =0
C geQ¢

Example of a solver: LCCDG schemes

@ Conditions suffisantes
@ VpEPW), Y [P loclpe + Bpc lchae] =0

ey

= Up= ( Z Mpc>_1 Z ('\/lpc'»’c’:7 + pg lpcnpc)

ceCy ceC,

@ Vq € Q(w) \ P(w), (ﬁqL - r)qF{) lgong =0 <= r)qL = ﬁqg

EqL”fJFEqRuE) _ pr—pP!

= Ug= = = = =
q < ZgL + ZgR ZgL + ZgR

qup+
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First-order numerical scheme for the 2D gas dynamics Godunov-type scheme

Convex combinaison

A n
° U'7Jr1 Ul — t Z Fqc- gcNgc + F(Un Z lgcMge
C geQe qeQ;
S———
=0
O U =(1-X)UZ+ > AgeUge
qeQ;c
Definitions
® \gc = %’:ch le  and Ac = geo, A
_ F F(UZ
° UqCZU'c’—(qC—())-nqc
ch
CFL condition
o A" < nlc — |wC| if ch =Z Pec
Z Zgc lqc ag Z qu
qeQ, qeEQ.
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First-order numerical scheme for the 2D gas dynamics Godunov-type scheme

Semi-discret first-order scheme

du =
dtc == Z Fqc . /qcnqc
9€Qc

Gibbs identity
@ TdS=de+ pdr=de—u.du+ pdr

Semi-discret production of entropy

dS; de; d dTC
° = me—2 .
Me To=gr = Mo + U« Mo=gz=+ o Mo~
d S 2
e me TC c E Zgo lge [(Ug — Uc) « Ngc] ™ >0
qeQ,

Positivity of the discrete scheme

3 F. VILAR, C.-W. SHU AND P.-H. MAIRE, Positivity-preserving
cell-centered Lagrangian schemes for multi-material compressible flows:
Form first-order to high-orders. Part Il: The 2D case. JCP, 2016.
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Hi rder extension in the 2D case

e High-order extension in the 2D case
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High-order extension in the 2D case High-order finite-volumes-type schemes

High-order extension of the finite-volume scheme
@ MUSCL, (W)ENO, DG, ...

Mean values equation

oU"“—un_Atn Z? loeh,
c - Y qc = 'qciqc

mc geEQ;
@ In ?qc, the mean values are substituted by the high-order values Ugc in we
at points q
Updated or total Lagrangian formulation
p % +Vx.F(U)=0 ou po% +Vx. (|J|J‘1 F(U)) =0

Piecewise polynomial approximation

° Ug’c(x) the polynomial approximation of the solution on w]

@ Uj .(X) the polynomial approximation of the solution on wl
@ Uqe = Up ,(Xq) (moving config.) or  Ugc = U .(Xq) (fixed config.)

o
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Numerical results in 2D

e Numerical results in 2D
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Numerical results in 2D 2nd order scheme

Sedov point blast problem

E 50

F 40

F 30

E 20

(a) Pressure field (b) Density profiles

Figure : Solution at time t = 1 for a Sedov problem on a 30 x 30 Cartesian
mesh
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Numerical results in 2D 2nd order scheme

Sedov point blast problem

E 50

F 40

F 130

E 20

(a) Pressure field (b) Density profiles

Figure : Solution at time t = 1 for a Sedov problem on a 30 x 30 Cartesian
mesh
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Numerical results in 2D

775 cells

(d) Polygonal grid -
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Initial unstructured grids for Sedov point blast problem

(c) Triangular grid
Figure :
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Numerical results in 2D 2nd order scheme

T
solution
2nd order

(e) Density field (f) Density profiles

Figure : Solution at time t = 1 for a Sedov problem on a grid made of 1110
triangular cells

Frangois Vilar (IMAG) Cell-centered Lagrangian schemes September 13th, 2017 16/36



Numerical results in 2D 2nd order scheme

Sedov point blast problem

. J ‘ ‘ ‘ ‘ e
=“:‘\3\§;\\\\‘\\§;\“ 35
2 A ' |
(9) Density field (h) Density profiles
Figure : Solution at time t = 1 for a Sedov problem on a grid made of 775
polygonal cells
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Numerical results in 2D

2nd order scheme

0.8

(i) Density field - 2nd order

Figure : Solution at time t = 2.5 x 10~ for a underwater TNT explosion on a
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Numerical results in 2D

2nd order scheme

0.8

(i) Density field - 2nd order

Figure : Solution at time t = 2.5 x 10~ for a underwater TNT explosion on a
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Numerical results in 2D 2nd order scheme

Aluminium projectile impact problem

1.5 2820
1F 2800
2780
0.5
2760
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

(k) Density field

Figure : Solution at time t = 0.05 for a projectile impact problem on a
100 x 10 Cartesian mesh
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Numerical results in 2D 2nd order scheme

Aluminium projectile impact problem

1.5 2820
1k 2800
2780
0.5
2760
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

(k) Density field

Figure : Solution at time t = 0.05 for a projectile impact problem on a
100 x 10 Cartesian mesh
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Taylor-Green vortex

Numerical results in 2D 2nd order scheme

| =N
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Figure : Final deformed grids at time t = 0.75, on a 10 x 10 Cartesian mesh

(m) Exact solution

v
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Taylor-Green vortex

Numerical results in 2D 2nd order scheme
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Figure : Final deformed grids at time t = 0.75, on a 10 x 10 Cartesian mesh

(m) Exact solution

v
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Numerical results in 2D 2nd order scheme

Convergence rates

L Ly [ Lo H Lo |

h El 14, E, la, | E  |a

1‘—0 5.06E-3 | 1.94 || 6.16E-3 | 1.93 || 2.20E-2 | 1.84

% 1.32E-3 | 1.98 || 1.62E-3 | 1.97 || 5.91E-3 | 1.95

% 3.33E-4 | 1.99 || 4.12E-4 | 1.99 || 1.53E-3 | 1.98

% 8.35E-5 | 2.00 || 1.04E-4 | 2.00 || 3.86E-4 | 1.99

11@ 2.09E-5 = 2.60E-5 = 9.69E-5 s

Table: Convergence rates on the pressure for a 2nd order DG scheme
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Taylor-Green vortex

Numerical results in 2D 3rd order scheme
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(n) 3rd order

Figure : Final deformed grids at time t = 0.75, on a 10 x 10 Cartesian mesh

(o) Exact solution

v
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Taylor-Green vortex

Numerical results in 2D 3rd order scheme
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(n) 3rd order

Figure : Final deformed grids at time t = 0.75, on a 10 x 10 Cartesian mesh

(o) Exact solution

v
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Numerical results in 2D 3rd order scheme

Convergence rates

L Ly [ Lo H Lo |

h El 14, E, la, | E |4

1‘—0 2.67E-4 | 2.96 || 3.36E-7 | 2.94 || 1.21E-3 | 2.86
% 3.43E-5 | 2.97 || 4.36E-5 | 2.96 || 1.66E-4 | 2.93
% 4.37E-6 | 2.99 || 5.59E-6 | 2.98 || 2.18E-5 | 2.96
% 5.50E-7 | 2.99 || 7.06E-7 | 2.99 || 2.80E-6 | 2.99

11@ 6.91E-8 = 8.87E-8 s 3.53E-7 s

Table: Convergence rates on the pressure for a 3rd order DG scheme
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3rd order scheme

Numerical results in 2D

Sod shock tube problem - symmetry preservation

II&B

F 108
Foq07
r 106

F q05

E Hos

7

i L

03 04 05 06 07 08 09 1

04 05

(s) 2nd order

06 07 08 09 1

(r) 1st order

Figure : Density fields with 1st and 2nd order schemes on a 3rd mesh
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Numerical results in 2D 3rd order scheme

Sod shock tube problem - symmetry preservation

solution

3rdorder e

Ho0.8

10.7

10.6

10.5

0 01 02 03 04 05 06 07 08 09 1

(t) Density field (u) Density profiles

Figure : 3rd order solution for a Sod shock tube problem on a 100 x 3 polar
grid
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Numerical results in 2D 3rd order scheme

Sod shock tube problem - symmetry preservation

H0.8 3rdorder ©

10.7

10.6

10.5

10.4

0 01 02 03 04 05 06 07 08 09 1

(v) Density field (w) Density profiles

Figure : 3rd order solution for a Sod shock tube problem on a 100 x 1 polar
grid
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Numerical results in 2D 3rd order scheme

Sod shock tube problem - symmetry preservation

H0.8 3rdorder ©

10.7

10.6

10.5

0.4

0 01 02 03 04 05 06 07 08 09 1

(v) Density field (w) Density profiles

Figure : 3rd order solution for a Sod shock tube problem on a 100 x 1 polar
grid
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Gresho-like vortex problem
05 05
041 0.4k

0.3 . . — -04 -03 -02 -0.1 0 0.1
(a) 1st orde (b) 2nd order

Figure : Final deformed grids at time { = 1, on a 20 x 18 polar mesh




(b) 2nd order
1, 0n a 20 x 18 polar mesh

(a) 1st order

Figure : Final deformed grids at time ¢

Gresho-like vortex problem



(c) 3rd orde (d) Exact solution

Figure : Final deformed grids at time { = 1, on a 20 x 18 polar mesh




(c) 3rd orde (d) Exact solution

Figure : Final deformed grids at time { = 1, on a 20 x 18 polar mesh




Numerical results in 2D 3rd order scheme

Gresho-like vortex problem

R e Bt
(e) Velocity profiles (f) Pressure profiles
Figure : Velocity and pressure profiles at time { = 1, on a 20 x 18 polar grid
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Numerical results in 2D 3rd order scheme

Gresho-like vortex problem

Gy ' solution
Y 1st order e

. . 2nd order
1.05 . 3rd order e
1.04 |- 9

»,
1.03 |- q
o
1.02 { g
1.01 |- 9
»
P T TSP 2 =
[ A
o
0.99 ¢ f |
.
o

0.98 9
0.97 L L L L

0 0.2 0.4 0.6 0.8 1

Figure : Density profiles at time { = 1, on a 20 x 18 polar grid
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Numerical results in 2D 3rd order scheme

Kidder isentropic compression

1

1
0.9 0.9
08l 08l
07 07h
06 06}
05 05k
0.4 0.4
03 03}
02 02l

0.1t 01l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(9) 1st order (h) 2nd order

Figure : Intial and final grids for a Kidder problem on a 10 x 5 polar mesh

v
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Numerical results in 2D 3rd order scheme

Kidder isentropic compression

‘ ‘ Ri: exact solution
1k Ri: 1st order 1
Ri: 2nd order ---e---
Re: exact solution
Re: 1st order
09 | Re: 2nd order ---o---
0.8 [ 1
0.7 | 1
0.6 [ 1
0.5 [ \ 1
)
04 - 1
©
0.3 [ i
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
Figure : Interior and exterior shell radii evolution for a Kidder problem on a
10 x 5 polar mesh

4
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Numerical results in 2D 3rd order scheme

Kidder isentropic compressmn

Hl exact solullon
s T —— 1
e: 3rd order ---@---
09 4
08 [ 4
0.7 |- 4
06 [ —
0.5 4
04 - - - - - - -
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
(i) Initial and final grids (j) Shell radii evolution
Figure : 3rd order solution for a Kidder compression problem on a 10 x 3
polar grid
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Numerical results in 2D 3rd order scheme

Accuracy and computational time for a Taylor-Green vortex

D.O.F N E! E Ef time (sec)
600 | 24 x25 | 2.67E-2 | 3.31E-2 | 8.55E-2 2.01
2400 | 48 x50 || 1.36E-2 | 1.69E-2 | 4.37E-2 11.0

Table: 1st order scheme

D.O.F N E} E Ef time (sec)
630 | 14 x 15 | 2.76E-3 | 3.33E-3 | 1.07E-2 2.77
2436 | 28 x 29 || 7.52E-4 | 9.02E-4 | 2.73E-3 11.3

Table: 2nd order scheme

D.O.F N E} E} Ef time (sec)
600 | 10 x 10 || 2.67E-4 | 3.36E-4 | 1.21E-3 4.00
2400 | 20 x 20 || 3.43E-5 | 4.36E-5 | 1.66E-4 30.6

Table: 3rd order scheme
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Numerical results in 2D 3rd order scheme

@ F. VILAR, P.-H. MAIRE AND R. ABGRALL, Cell-centered discontinuous
Galerkin discretizations for two-dimensional scalar conservation laws on
unstructured grids and for one-dimensional Lagrangian hydrodynamics.
CAF, 2010.

@ F. VILAR, Cell-centered discontinuous Galerkin discretization for
two-dimensional Lagrangian hydrodynamics. CAF, 2012.

@ F. VILAR, P.-H. MAIRE AND R. ABGRALL, A discontinuous Galerkin
discretization for solving the two-dimensional gas dynamics equations
written under total lagrangian formulation on general unstructured grids.
JCP, 2014.

@ F. VILAR, C.-W. SHU AND P.-H. MAIRE, Positivity-preserving
cell-centered Lagrangian schemes for multi-material compressible flows:
Form first-order to high-orders. Part I: The 1D case. JCP, 2016.

[@ F. VILAR, C.-W. SHU AND P.-H. MAIRE, Positivity-preserving
cell-centered Lagrangian schemes for multi-material compressible flows:
Form first-order to high-orders. Part Il: The 2D case. JCP, 2016.
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Numerical results in 2D 3rd order scheme

Taylor-Green vortex

MESI{I FOR A TAYLOR-GREEN PROBLEM WITH A 3rd ORDER SCHEME MES};I FOR A TAYLOR-GREEN PROBLEM WITH A 5th ORDER SCHEME
0 0s
07 07
0 0
0s 0s
04 0.4
02 02
o o
00 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1
(k) 3rd order (I) 5th order
Figure : Final deformed grids at time ¢ = 0.6, for 16 triangular cells meshes
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Numerical results in 2D 3rd order scheme

Taylor-Green vortex

MESI{I FOR A TAYLOR-GREEN PROBLEM WITH A 3rd ORDER SCHEME MES};I FOR A TAYLOR-GREEN PROBLEM WITH A 5th ORDER SCHEME
0 0
07 07
0 0
0s 0s
04 0.4
02 02
o o
00 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1
(k) 3rd order (I) 5th order
Figure : Final deformed grids at time ¢ = 0.6, for 16 triangular cells meshes
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Numerical results in 2D 3rd order scheme

Sod shock tube problem - symmetry preservation

DENSITY FOR A POLAR SOD PROBLEM WITH A 4th ORDER SCHEME 1.1 T

T T T T T T T T
| solution
athorder e

0 0‘1 D‘.2 0‘.3 0‘.4 0‘5 0‘.6 (;.7 0‘.8 l)‘.9 1
(m) Density field (n) Density profiles

Figure : 4th order solution for a Sod shock tube problem on a polar grid made
of 308 triangular cells
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Numerical results in 2D 3rd order scheme

Sedov point blast problem - spurious deformations

55 j j j j j suh‘mon
6 adorder o

0 0.2 0.4 0.6 0.8 1 12 14

(o) Density field (p) Density profiles

Figure : Third-order solution at time t = 1 for a Sedov problem on a 30 x 30
Cartesian mesh
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