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Introduction Eulerian and Lagrangian descriptions

Eulerian formalism (spatial description)
o Fixed referential attached to the observer
@ Fixed observation area in which the fluid flows through

Lagrangian formalism (material description)

@ Moving referential attached to the material
@ Observation area getting moved and deformed through the fluid flow

Advantages of the Lagrangian formalism
@ Adapted to the study of regions undergoing large shape changes
@ Naturally tracks interfaces in multimaterial compressible flows
@ No numerical diffusion from the discretization of the convection terms

Disadvantages of the Lagrangian formalism
@ Robustness issue in cases of shear flows or vortexes

— ALE (Arbitrary Lagrangian-Eulerian) method
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@ p is the fluid density

@ u=(uy,up) is the fluid velocity

@ e s the fluid specific total energy

@ p s the fluid pressure

@ c=e— Ju? isthe fluid specific internal energy

Euler equations

° % +Vx-(pu) =0 Continuity equation
° 6aptu +Vx.(pu@Uu+plg)=0 Momentum conservation equation
° a@pte +Vx.(pue+pu)=0 Total energy conservation equation

Thermodynamical closure
@ p=p(p,e) Equation of state (EOS)
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Introduction Updated Lagrangian description

Trajectory equation

o w —u(x(X,1),1),  x(X,0)=X

Material time derivative
@ o(x,t) isafluid variable with sufficient smoothness

do _ dp(x(X,1),t) _ d¢
®ar = ot = 5 TU Ve

Lagrangian equations
A0 gy

d
du
° PEJFVXP—O
de
° pEJrVX.(pu)_O
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Introduction

Definitions
or=1
P
o U= (7,uy,up, €)

o F(U) = (-u,p1(1),p1(2),pu)
o ]l(l) = (5,‘1,5/2)t

is the specific volume
t

is the variables vector

Updated Lagrangian description

is the flux vector

Updated Lagrangian formulation

V)

o
(=

@ p— +Vy.F 0

dt

Moving configuration

Integral conservative form

o’ /pUdv+ F(U).nds=0
w ow

ot

Moving configuration

Thermodynamical closure
® p=p(pe)

Equation of state (EOS)
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Introduction Equations of state

Ideal EOS for the perfect gas
@ p=p(y—1)e where a=,/2P
olf p>0 then >0 <<= &>0 (& p>0)

Stiffened EOS for water

@ p=p(y—1)e—vps where a= 7”(":"5)

olf p>0 then pe>ps <= &>0 (& p>—ps)

Jones-Wilkins-Lee (JWL) EOS for the detonation-products gas

v p—1fi(p)+p 1 (p)
P

olf p>0 then >0 = &>0 (& p>fi(p)>0)

@ p=p(y—1)e+f(p) where a=

Mie-Griineisen EOS for solids

-
@ p=poloc+podfn(p) where a= \/ag fr.(n) + p"p;’p

o If pelp*,g2spl then >0 = & >0(& p> podsfn(p))
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First-order discretization Finite volume scheme

Definitions

0 0=1t"<t"<...<tN=T isapartition of the time domain [0, T]
@ At"=t"1 —t" s the n time step

@ w=|J,wc isa partition of the moving domain w

@ |wc| is the volume of cell w,

@ Mg = pl|we| is the constant mass of cell we

Generic cell

(a) Polygonal cell. (b) Curved polygonal cell.

@ O, isa control point set of cell w¢
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First-order discretization Finite volume scheme

Integral conservative system of equations

gt / pUdv + F(U).nds=0 Moving configuration
ow

First-order finite volume scheme

o UZ= mi p(x,t") U(x, t") dv

C Jwe

At

c

o UM =um -

Z Fqc . /qcnqc
qQeQ¢

n+1 _ yn nyj
@ Xq =Xg+ At"ug

Control point numerical fluxes

® Fgc = (—Ug, 1(1) Py, 1(2) Pye, Py Ug)* Local to the cell
@ Py = Pg — Zgc (Ug — UZ) « Ngc 1D approximate Riemann solver
@z, >0 Local approximation of the acoustic impedance
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First-order discretization Finite volume scheme

Node neighboring cells

(c) Polygonal cell. (d) Curved polygonal cell.

@ Cp is the neighboring cell set of node p

Local 1D approximate Riemann solver

@ Dy = Pg — Zgc (Ug — UZ) « Ngc Loss of the conservation

Scheme conservation

0> m Uit =Y "mUl = DY Byl =0
c c

Cc geQc¢
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GLACE scheme (B. Després et al) 2005
@ Q. =P, isthe node set of cell w,
® Vg€ Qc, loehge = 3(lg-qNg-q + lag: Ngg+)

° u, = ( Z M/Oc)71 Z (Mpc”g +pg Ipcnpc)

ceCp cecp

@ Mpc = Zpc Ipe (Mpe ® Npc)

EUCCLHYD scheme (P.-H. Maire et al) 2007

® Q.= U {p.p*} is the union of the face control point set O(fy,+)
pEP:

® g€ Qfppr) ={P, P}, lgoNge = Flpp+ Npp+

® U= ( Z Mpc)_1 Z (MpcuZ + pe /pcnPC>

ceCp ceCp

@ Mpc = Zpe e (Mpe ® Npe) + Zgo I (N © Nife)
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First-order discretization Finite volume scheme

CCDG scheme (F. Vilar et al) 2012
® Q= U Q(fop+)
PEPe
! )Y
@ gc¢c Q(fpp+)a /qcnqc = )‘q(C) Z TC(Xk X eZ) d¢
0 kEQ(fopt)
> n_, > n n _ An
ouq_(qufL+f"Hu”>~pR P Ny Vg € Q¢ \ P
ZgL + ZgR ZgL + ZgR
—1
° U, = ( Z Mpc) Z <Mpcu’c7 + p? Ipcnpc) Vp e P
ceCy cecp
@ Moc = Zpg pe (Mpe ® Mye) + Zge I (N @ Nif)
Finite volume scheme on conical meshes (P. Hoch etal) 2011
o @ B. BOUTIN, E. DERIAZ, P. HOCH and P. NAVARO, Extension of ALE
methodology to unstructured conical meshes. ESAIM: Proceedings,
32:32-55, 2011.

Frangois Vilar (Brown) Positivity-preserving Lagrangian schemes July 27th, 2015 11/31



First-order discretization Positivity-preserving scheme

@ |we| >0 = 71>0 Positive volume and density
e (a7)? = (aU7))? >0 Computable sound speed
Convex admissible set
T
o G = U = u 5 T E]Tm/n,Tmax[ and g(U) > Emin
e
@ ¢=¢—ps7 If stiffened gas EOS, £=¢ otherwise

Positivity-preserving scheme

@ Under which constraint, U? € G does imply U,’.7+1 eaG
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First-order discretization Positivity-preserving scheme

1) Particular definition of the local acoustic impedances zy,

0 %0 o ( a0+ o | (T ) e ) Modified Dukowicz solver
m
° A" < 0p ==
2 qZac lac
@ 0. <1
H I max i pnen
@ o, <min (1 — I, e -1, (1 - ) |75 )

w
o am<o, 1B (= bl
| >2q Uq » lgcNgc| |wd|

n_n
°Uv§min(1—7;"cn’" Tmae (1 — <mn) Pc€c>

’
c
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High-order discretization High-order finite-volume-based scheme

High-order polynomial extension

° Up .(x) € PX(we) piecewise polynomial reconstruction

oun= 1 [ 0 (x) Uz (x)av

C Jwe

@ MUSCL, ENO, WENO, DG, ...

Generic scheme on the mass averaged values

n+1 n At" E
o Ui =U] — p Z Fac « lgcNgc
¢ geQc

® Pgc = Pgc — Zgo (Ug — Ugc) « Nc

© Uge =Uj (xq) and  pge=p(Ug)
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X. Zhang and C.-W. Shu seminal work

@ Positivity-preserving high-order schemes
@ Decompose the high-order scheme in first-order-like schemes

High-order quadrature rule

° {(Wavya)}aeec are the positive quadrature weights and quadrature
points, including the cell control point set, i.e. Q; C ©¢

]
o Ug:ﬁc Z Mo Une

IS
@ My = w, m, inthe GLACE and EUCCLHYD schemes
@ Mye = W, p°(X,) Q| inthe CCDG scheme

UZ convex decomposition

1 Z 1 Z my 1 Z
o Ug = H mac UaC + 7[‘” ch Uqc = 7mc Uz + 7m ch Uqc
(o] c (o] C
€0\ Q¢ geQc qeQ;

1
[ mz = Z Mec and Uz = e Z Mac Uac
@€0,\ Qs € a€0.\ Q.
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High-order discretization Positivity-preserving scheme

Fundamental relation

® > lgehge =0

The normals sum to zero
geQ.

Artificial flux

@ Fgc = (—uc, 1(1) pge, 1(2) bge, Pgc uc)t
° Z 3rc . /rcnrc =0

reQe

° Z Src s lrePe = =T g « lgcNge
reQc\q

U+! convex decomposition

At = At"
(*) Ug+1 m Z Fqc L} /qcnqc +7 Z 8’qc L} /qcnqc

m
¢ geQe ¢ qeQ;

* A" —
T T 2 ().t

A

_Ug_

qeEQ,c
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New artificial flux

o 7 = (-, 1(1)p7, 1(2) 57, 7 ud)"

=9 _ | Fee if r=aq,
@ Vre Qe J,= { Fres otherwise,

U+! convex decomposition

my m,
o Ut = Ui+ Y —EVg
Me qeQc Mo

A" —q
@ Vgo =Uge — = Z Sy v leNre
ac reQe

First-order scheme

n+1 n At" E
° Uc = Uc - Z Frc . /rcnrc
C reQe

@ Fgc = (—an ]1(1)ﬁqca H(Z)ﬁqcv ﬁqcﬁcl)t

@ Dy = Pl — Zrc (Ur — U]) « N
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Conditions to mimic the first-order

° Z Py leNre = Z (ch Z7 (W] — Uge) - nrc) lreNre

reQc reQc

@ (Pgc — Pac) lgcNge = — Z 2% e (Ne ® Nie) (W7 — Uge)
reQe Ma

® Pyc = Pgc — Zgc (Ug — Ugc) « Ngc

Artificial pressure

@ Pgc chnqc = Pqc chnqc + Mg (uc - uqc)

Artificial velocity

° Z Pac lgeNge = 0
qeQc

= ( Z Mg>_1 Z {Mg Uge — Pgc /qC”QC}

qeQc qeEQ.
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High-order discretization Positivity-preserving scheme

1) Particular definition of the local acoustic impedances zy,
oVqge Qc, UgeeG and UzeG Specific limitation procedure

@ Z = pge (aqc +T| (@ — uge) - n,c|>

m,
@ At<oe — = VYgeQ with o<1
e Zrz,% I,—c Cc e
i _ Tmin Tmax _ _ Emin qe
@ oy < min (1 o, T 1, (1 ch> i ) |
2) Additional constraint on the time step At”
oVge Q;, Ugee G and U;e G Specific limitation procedure
m,
@ At<oe ——=—, YqgeQ with  0e<2
e Zrzflc Im c e
o At<o, M
} Z T /rcnrc|
reQe
i Tmin Tmax __ _ Emin €qc
@ o, < min (1 — o T, (1 ch) Lo )
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High-order discretization Positivity-preserving limitation

Mean value conservative limitation

© Upo(x) = Ug+6(Up, - UD)
@ 0 €0,1] isthe limiting coefficient to be determined

Requiremen

@ Vg e Q, Uqc =Uf (Xq) €G

_ 1 __
o Us= > macUl (X)) €G
a€0:\Qc

Specific volume limitation 7 € [Tmin, Tmax]
@ T/ (X) =8+ 0 (rfl — 74)

® 6, = min(g™n, gmax)

0’(-‘

n
. TV = 9p—n .
min _ ‘C min H min _ mi * mi
@ 0" = —+——-  with 77" = min(7g, Minge o, Tqc)
Tc = Tm
Togme — T
@ gmax — _max c max _
g

_mex__Cwith 77 = max(r, MaxXge o, Tqc)
TTm ~ — Tc¢
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High-order discretization Positivity-preserving limitation

Velocity and total energy limitation

o up (x)=ug+0.(up,— ugq)

® ep (X)=e]+0-(ef.—ec)

Internal energy condition

°c=e— }(u)?
@ é=¢—ps7 If stiffened gas EOS, &£=¢ otherwise

= 0-(1 — 0.
® (0 =20+ 6. (F000) — &) + U0 (up () - w2

@ 0. s chosen in optimal manner by solving this quadratic equation
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High-order discretization High-order Runge-Kutta time integration

SSP Runge-Kutta method

@ Convex combination of first-order forward Euler schemes

@ We know there is a time step small enough ensuring the global
high-order scheme to be positive

Practical applications - lterative process

@ At each time level n, we start from an initial time step At”

@ If at any Runge-Kutta stage the average of the numerical solution does
not belonged to the admissible set then we return to time level n and take
At"/2 as new time step

@ In the light of the theory previously developed, we know for sure this
iterative process admits a limit

A\
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Numerical results

e Numerical results
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al results Sedov point blast problem

Solution —
1istorder ¢
2ndorder ©
L |
ol |
3F 4
2 i 4
hl L
0.2 0.4 0.6 0.8 1 E 0 0 0‘,2 04 ‘, - O‘E ‘I 12
(e) Second-order scheme. (f) Density profiles.
Fig: Point blast Sedov problem on a Cartesian grid made of 30 x 30 cells: density.
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al results Sedov point blast problem

Sedov point blast problem polygonal grid

solution : j j j
1storder ¢
2ndorder o
L
ok
all
all
L
o ‘
0.4 0.6 0.8 . 0 02
(9) Second-order scheme. (h) Density profiles.
Fig: Point blast Sedov problem on a mesh made of 775 polygonal cells: density.
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Numerical results Air-water-air problem

0.4 0.6 08 0.4 0.6 08 1

(i) Density map. (j) Kinetic energy map.

Fig: Air-water-air problem on a polar grid made of 120 x 9 cells with second-order
scheme.
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Numerical results

Air-water-air problem

A

12 T T T T 10 T
solution solution
1st order 1st order
2nd order ° 9 2nd order ° Bl
1F B 5 |
, |
08 |- 4
. 0 |
s |
0.6 |- 4
a |
s |
04 H
. |
02 i 1 ‘ 4
0 A
. : : : p ‘ ‘ ‘ ‘
0 0.2 0.4 06 08 1 1.2 0 0.2 0.4 0.6 08 1 12
(k) Density profiles. () Velocity profiles.
Fig: Air-water-air problem on a polar grid made of 120 x 9 cells.
.

ir-water-air problem on a polar

grid
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Numerical results derwater TNT explosion problem

nderwater TNT explosion problem on a polar grid

8000
7000
6000
5000
4000
3000
2000

1000

0.4 06 0.8 . 0.4 0.6 0.8

(m) Density map. (n) Pressure map.

Fig: Underwater TNT explosion problem on a polar grid made of 120 x 9 cells with
second-order scheme.
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Numerical results Underwater TNT explosion problem

Underwater TNT explosion problem on a polar grid

0.0013 . T T T T T 1000 T T T T T
solution solution
1st order 1st order °
0.0012 | 2ndorder © B 2ndorder o d
0.0011 4
0.001 | E
0.0009 - { 3 )
0.0008 1
0.0007 1 i
0.0006 1
0.0005 |- i
Ed )
0.0004 b
ol
0.0003 L L L L L L L L L I
[ 0.2 0.4 0.6 08 1 1.2 0 02 04 0.6 0.8 1 12
(o) Density profiles. (p) Pressure profiles.

Fig: Underwater TNT explosion problem on a polar grid made of 120 x 9 cells.
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Numerical results Projectile impact problem

Projectile impact problem on a Cartesian grid

1.5F 2820
1k 2800
2780
0.5
2760
0
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

(g) Density maps.

Fig: Projectile impact problem on a Cartesian grid made of 100 x 10 cells with
second-order scheme.
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Conclusion

Conclusions

@ Demonstration of positivity of one-dimensional Lagrangian schemes
@ For both first-order scheme and high-order schemes
@ For both ideal and non-ideal equations of state

@ Two different techniques used

e Particular definition of the local acoustic impedances approximation
o Additional constraint of the time step

@ Extension to the two-dimensional case
@ Theory fits a wide number of existing cell-centered Lagrangian schemes
@ Improvement of the robustness

Perspectives
@ High-order limitation on moving high-order geometries
@ Extension to ALE

@ Extension to magneto-hydrodynamics (FCM)
@ Extension to 3D
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Conclusion

Articles published on this topic

@ F. VILAR, P.-H. MAIRE and C.-W. SHu, Positivity-preserving cell-centered
Lagrangian schemes for multi-material compressible flows: From
first-order to high-orders. Journal of Computational Physics, 2015.

To be submitted in the next days.

@ F. VILAR, P.-H. MAIRE and R. ABGRALL, A discontinuous Galerkin
discretization for solving the two-dimensional gas dynamics equations
written under total Lagrangian formulation on general unstructured grids.
Journal of Computational Physics, 2014.

[A F. VILAR, A discontinuous Galerkin discretization for solving the
two-dimensional gas dynamics equations written under total Lagrangian
formulation on general unstructured grids. Computers and Fluids, 2012.

@ F. VILAR, P.-H. MAIRE and R. ABGRALL, Cell-centered discontinuous
Galerkin discretizations for two-dimensional scalar conservation laws on
unstructured grids and for one-dimensional Lagrangian hydrodynamics.
Computers and Fluids, 2010.
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