DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Ph.D. defense

High-order cell-centered discontinuous Galerkin discretizations for scalar conservation laws and Lagrangian hydrodynamics

CEA CESTA¹ and INRIA² | F. Vilar¹, P.-H. Maire¹, R. Abgrall² 16 NOVEMBER 2012

- 1 Introduction and preliminary results
- 2 2D Lagrangian hydrodynamics
- 3 DG discretization general framework
- 4 Second-order DG scheme
- 5 Third-order DG scheme
- 6 Conclusions and perspectives

Introduction and preliminary results

- 2 2D Lagrangian hydrodynamics
- 3 DG discretization general framework
- 4 Second-order DG scheme
- 5 Third-order DG scheme
- 6 Conclusions and perspectives

Motivations and methodology

Motivations

- $\bullet\,$ Inertial confinement fusion \longrightarrow compressible gas dynamics simulation
- Complex flows (very intense shock and rarefaction waves, strong variation of the fluid domain, multimaterial flows, high cell aspect ratios)
- Lagrangian formalism (reference frame moving with the fluid)
- Very high-order extension of the Finite Volume EUCCLHYD scheme
 - P.-H. MAIRE, R. ABGRALL, J. BREIL AND J. OVADIA, *A cell-centered Lagrangian scheme for two-dimensional compressible flow problems.* SIAM J. Sci. Comput., 2007.

Progressive methodology

- 1D scalar conservation laws DG discretization
- 2D scalar conservation laws on unstructured grids DG discretization
- 1D system of conservation laws DG discretization
- 2D gas dynamics equation written in a total Lagrangian formalism, on total unstructured grids DG discretization

Discontinuous Galerkin (DG)

DG schemes

- Natural extension of Finite Volume method
- Piecewise polynomial approximation of the solution in the cells
- High-order scheme to achieve high accuracy

Procedure

- Local variational formulation
- Choice of the numerical fluxes (global L² stability, entropy inequality)
- Time discretization TVD multistep Runge-Kutta
 - C.-W. SHU, Discontinuous Galerkin methods: General approach and stability. 2008.
- Limitation vertex-based hierarchical slope limiters
 - D. KUZMIN, A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods. J. Comp. Appl. Math., 2009.

2 1D Scalar Conservation Laws (SCL)

Comparison between DG schemes with limitation

FIGURE: 1D linear advection of a combination of smooth and discontinuous profiles after 10 periods using 200 cells.

2D Scalar Conservation Laws (SCL)

SCL on an unstructured grid made of 2500 polygonal cells

2D Scalar Conservation Laws (SCL)

Third-order DG scheme without limitation

	L ₁		L ₂		L_{∞}	
\mathcal{N}_{c}	E_{L_1}	q_{L_1}	E_{L_2}	q_{L_2}	$E_{L_{\infty}}$	$q_{L_{\infty}}$
10 × 10	1.96E-3	3.14	2.55E-3	3.09	8.07E-3	2.90
20 imes 20	2.22E-4	3.01	3.00E-4	3.01	1.08E-3	3.02
40 × 40	2.75E-5	3.00	3.73E-5	3.00	1.33E-4	3.01
80 × 80	3.43E-6	3.00	4.67E-6	3.00	1.65E-5	3.01
160 × 160	4.29E-7	-	5.83E-7	-	2.05E-6	-

TABLE: Rate of convergence in the case of the linear advection $(\mathbf{A} = (1, 1)^t)$ of the smooth initial condition $u^0(\mathbf{x}) = \sin(2\pi x) \sin(2\pi y)$ where $\mathbf{x} = (x, y)^t \in [0, 1]^2$, with periodic boundary conditions, at the end of a period on Cartesian grids with a CFL= 0.1.

22 1D Lagrangian gas dynamics

Third-order DG scheme without limitation

FIGURE: Third-order DG scheme solutions for the Sod shock tube problem on 100 cells: density.

1D Lagrangian gas dynamics

Influence of the limitation on the linearized Riemann invariants

FIGURE: Third-order DG scheme solutions for the Sod shock tube problem, using 100 cells: density, zoom on $[0.67, 0.87] \times [0.24, 0.29]$.

B. COCKBURN AND C.-W. SHU, The RKDG method for conservation laws V: Multidimensional systems. J. Comp. Phys., 1998.

2 1D Lagrangian gas dynamics

FIGURE: Third-order DG scheme solution with limitation, for a Shu oscillating shock tube problem using 200 cells.

Rate of convergence for the third-order DG scheme

	L ₁		L ₂		L_{∞}	
ΔX	E_{L_1}	q_{L_1}	E_{L_2}	q_{L_2}	$E_{L_{\infty}}$	$q_{L_{\infty}}$
$\frac{1}{50}$	9.09E-5	3.01	3.40E-4	2.87	2.20E-3	2.79
$\frac{1}{100}$	1.13E-5	3.58	4.64E-5	3.28	3.17E-4	2.70
$\frac{1}{200}$	9.40E-7	3.30	4.79E-6	3.34	4.89E-5	2.64
$\frac{1}{400}$	9.57E-8	3.03	4.74E-7	3.07	7.85E-6	2.91
$\frac{1}{800}$	1.17E-8	-	5.63E-8	-	1.04E-6	-

TABLE: Rate of convergence computed with the particular smooth solution designed in the special case of $\gamma = 3$, on the [0, 1] domain, at time t = 0.8 with a CFL= 0.1.

F. VILAR, P.-H. MAIRE AND R. ABGRALL, *Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics.* Comp. & Fluids, 2010.

Introduction and preliminary results

- 2 2D Lagrangian hydrodynamics
- 3 DG discretization general framework
- 4 Second-order DG scheme
- 5 Third-order DG scheme
- 6 Conclusions and perspectives

DE LA RECHERCHE À UNIQUETRI

Cell-Centered Lagrangian schemes

Finite volume schemes on moving mesh

- J. K. Dukowicz: CAVEAT scheme A computer code for fluid dynamics problems with large distorsion and internal slip, 1986
 B. Després: GLACE scheme Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems, 2005
 P.-H. Maire: EUCCLHYD scheme A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, 2007
 G. Kluth: Hyperelasticity Discretization of hyperelasticity with a cell-centered Lagrangian scheme, 2010
 S. Del Pino: Curvilinear Finite Volume method A curvilinear finite-volume method to solve compressible gas dynamics in semi-Lagrangian coordinates, 2010
- P. Hoch: Finite Volume method on unstructured conical meshes Extension of ALE methodology to unstructured conical meshes, 2011

DG scheme on initial mesh

• R. Loubère: DG scheme for Lagrangian hydrodynamics A Lagrangian Discontinuous Galerkin-type method on unstructured meshes to solve hydrodynamics problems, 2004

Lagrangian and Eulerian descriptions

Flow transformation of the fluid

The fluid flow is described mathematically by the continuous transformation, Φ, so-called mapping such as Φ : X → x = Φ(X, t)

FIGURE: Notation for the flow map.

where X is the Lagrangian (initial) coordinate, x the Eulerian (actual) coordinate, N the Lagrangian normal and n the Eulerian normal

Deformation Jacobian matrix: deformation gradient tensor

•
$$F = \nabla_X \Phi = \frac{\partial x}{\partial X}$$
 and $J = \det F > 0$

Lagrangian and Eulerian descriptions

Trajectory equation

•
$$\frac{\mathrm{d} \boldsymbol{x}}{\mathrm{d} t} = \boldsymbol{U}(\boldsymbol{x}, t), \quad \boldsymbol{x}(\boldsymbol{X}, 0) = \boldsymbol{X}$$

Material time derivative

•
$$\frac{\mathrm{d}}{\mathrm{d}t}f(\boldsymbol{x},t) = \frac{\partial}{\partial t}f(\boldsymbol{x},t) + \boldsymbol{U} \cdot \boldsymbol{\nabla}_{\boldsymbol{x}}f(\boldsymbol{x},t)$$

Transformation formulas

0	$Fd \boldsymbol{X} = \mathrm{d} \boldsymbol{x}$	Change of shape of infinitesimal vectors
0	$\rho^0 = \rho J$	Mass conservation
•	J dV = dv	Measure of the volume change

• $JF^{-t}NdS = nds$ Nanson formula

Differential operators transformations

- $\nabla_X P = \frac{1}{J} \nabla_X \cdot (P J F^{-t})$ Gradient operator
- $\nabla_x \cdot \boldsymbol{U} = \frac{1}{J} \nabla_x \cdot (JF^{-1}\boldsymbol{U})$ Divergence operator

Lagrangian and Eulerian descriptions

Piola compatibility condition

• $\nabla_x \cdot G = 0$, where $G = JF^{-t}$ is the cofactor matrix of F

$$\int_{\Omega} \nabla_{\mathbf{x}} \cdot \mathbf{G} \, \mathrm{d}\mathbf{V} = \int_{\partial \Omega} \mathbf{G} \, \mathbf{N} \, \mathrm{d}\mathbf{S} = \int_{\partial \omega} \mathbf{n} \, \mathrm{d}\mathbf{S} = \mathbf{0}$$

Gas dynamics system written in its total Lagrangian form

•
$$\frac{d F}{dt} - \nabla_X \boldsymbol{U} = 0$$
 Deformation gradient tensor equation
• $\rho^0 \frac{d}{dt} (\frac{1}{\rho}) - \nabla_X \cdot (G^t \boldsymbol{U}) = 0$ Specific volume equation
• $\rho^0 \frac{d \boldsymbol{U}}{dt} + \nabla_X \cdot (P G) = \mathbf{0}$ Momentum equation
• $\rho^0 \frac{d \boldsymbol{E}}{dt} + \nabla_X \cdot (G^t P \boldsymbol{U}) = 0$ Total energy equation

Thermodynamical closure

• EOS:
$$P = P(\rho, \varepsilon)$$
 where $\varepsilon = E - \frac{1}{2}U^2$

- Introduction and preliminary results
- 2 2D Lagrangian hydrodynamics
- 3 DG discretization general framework
- 4 Second-order DG scheme
- 5 Third-order DG scheme
- 6 Conclusions and perspectives

DG discretization general framework

$(\alpha + 1)^{\text{th}}$ order DG discretization

• Let $\{\Omega_c\}_c$ be a partition of the domain Ω into polygonal cells

•
$$\{\sigma_k^c\}_{k=0...K}$$
 basis of $\mathbb{P}^{\alpha}(\Omega_c)$, where $K + 1 = \frac{(\alpha+1)(\alpha+2)}{2}$

• $\phi_h^c(\mathbf{X}, t) = \sum_{k=0}^{N} \phi_k^c(t) \sigma_k^c(\mathbf{X})$ approximate function of $\phi(\mathbf{X}, t)$ on Ω_c

Definitions

• Center of mass $\mathcal{X}_c = (\mathcal{X}_c, \mathcal{Y}_c)^{\mathsf{t}} = \frac{1}{m_c} \int_{\Omega_c} \rho^0(\mathbf{X}) \mathbf{X} \, \mathrm{d}V$, where m_c is the constant mass of the cell Ω_c

• The mean value
$$\langle \phi \rangle_c = \frac{1}{m_c} \int_{\Omega_c} \rho^0(\mathbf{X}) \phi(\mathbf{X}) \, \mathrm{d} \mathbf{V}$$

of the function ϕ over the cell Ω_c

• The associated scalar product $\langle \phi, \psi \rangle_c = \int_{\Omega_c} \rho^0(\mathbf{X}) \, \phi(\mathbf{X}) \, \psi(\mathbf{X}) \, \mathrm{d}V$

Polynomial Taylor basis

Taylor expansion on the cell, located at the center of mass

$$\phi(\boldsymbol{X}) = \phi(\boldsymbol{\mathcal{X}}_c) + \sum_{q=1}^{\alpha} \sum_{j=0}^{q} \frac{(\boldsymbol{X} - \boldsymbol{\mathcal{X}}_c)^{q-j} (\boldsymbol{Y} - \boldsymbol{\mathcal{Y}}_c)^j}{j! (q-j)!} \frac{\partial^q \phi}{\partial \boldsymbol{X}^{q-j} \partial \boldsymbol{Y}^j} (\boldsymbol{\mathcal{X}}_c) + o(\|\boldsymbol{X} - \boldsymbol{\mathcal{X}}_c\|^{\alpha})$$

$(\alpha + 1)^{\text{th}}$ order Polynomial Taylor basis

bas

• The first-order polynomial component and the associated basis function

$$\phi_0^c = \langle \phi \rangle_c$$
 and $\sigma_0^c = 1$

• The *q*th-order polynomial components and the associated basis functions

$$\phi_{\frac{q(q+1)}{2}+j}^{c} = (\Delta X_{c})^{q-j} (\Delta Y_{c})^{j} \frac{\partial^{q} \phi}{\partial X^{q-j} \partial Y^{j}} (\mathcal{X}_{c}),$$

$$\sigma_{\frac{q(q+1)}{2}+j}^{c} = \frac{1}{j!(q-j)!} \left[\left(\frac{X-\chi_{c}}{\Delta X_{c}} \right)^{q-j} \left(\frac{Y-Y_{c}}{\Delta Y_{c}} \right)^{j} - \left\langle \left(\frac{X-\chi_{c}}{\Delta X_{c}} \right)^{q-j} \left(\frac{Y-Y_{c}}{\Delta Y_{c}} \right)^{j} \right\rangle_{c} \right],$$
where $0 < q \le \alpha, j = 0 \dots q, \Delta X_{c} = \frac{X_{max} - X_{min}}{2}$ and $\Delta Y_{c} = \frac{Y_{max} - Y_{min}}{2}$
LUO, J. D. BAUM AND R. LÖHNER, *A DG method based on a Taylor*
sis for the compressible flows on arbitrary grids, J. Comp. Phys., 2008,

Polynomial Taylor basis

Outcome

• First moment associated to the basis function $\sigma_0^c = 1$ is the mass averaged value

$$\phi_0^c = \langle \phi \rangle_c$$

• The successive moments can be identified as the successive derivatives of the function expressed at the center of mass of the cell

$$\phi_{\frac{q(q+1)}{2}+j}^{c} = (\Delta X_{c})^{q-j} (\Delta Y_{c})^{j} \frac{\partial^{q} \phi}{\partial X^{q-j} \partial Y^{j}} (\mathcal{X}_{c})$$

• The first basis function is orthogonal to the other ones

$$\langle \sigma_0^c, \sigma_k^c \rangle_c = m_c \, \delta_{0k}$$

• Same basis functions regardless the shape of the cells (squares, triangles, generic polygonal cells)

DG discretization general framework

Lagrangian gas dynamics equation type

• $\rho^0 \frac{\mathrm{d}\phi}{\mathrm{d}t} + \nabla_X \cdot (\mathrm{G}^{\mathrm{t}} f) = 0$, where **f** is the flux function

 $G = JF^{-t}$ is the cofactor matrix of F

Local variational formulations

•
$$\int_{\Omega_c} \rho^0 \frac{\mathrm{d}\,\phi}{\mathrm{d}t} \sigma_q^c \,\mathrm{d}\,V = \sum_{k=0}^K \frac{\mathrm{d}\,\phi_k^c}{\mathrm{d}t} \int_{\Omega_c} \rho^0 \sigma_q^c \sigma_k^c \,\mathrm{d}\,V$$
$$= \int_{\Omega_c} \boldsymbol{f} \cdot \mathbf{G}\,\nabla_X \sigma_q^c \,\mathrm{d}\,V - \int_{\partial\Omega_c} \overline{\boldsymbol{f}} \cdot \sigma_q^c \,\mathbf{G}\,\mathbf{N}\mathrm{d}\,S$$

Geometric Conservation Law (GCL)

Equation on the first moment of the specific volume

$$\int_{\Omega_c} \frac{\mathrm{d} J}{\mathrm{d} t} \,\mathrm{d} V = \frac{\mathrm{d} |\omega_c|}{\mathrm{d} t} = \int_{\Omega_c} \nabla_X \,\cdot (\mathsf{G}^{\mathsf{t}} \,\boldsymbol{U}) \,\mathrm{d} V = \int_{\partial\Omega_c} \overline{\boldsymbol{U}} \,\cdot \,\mathsf{G} \boldsymbol{N} \mathrm{d} S$$

DG discretization general framework

Mass matrix properties

- $\int_{\Omega_c} \rho^0 \sigma_q^c \sigma_k^c \, \mathrm{d}V = \left\langle \sigma_q^c, \sigma_k^c \right\rangle_c \quad \text{generic coefficient of the symmetric positive definite mass matrix}$
- $\langle \sigma_0^c, \sigma_k^c \rangle_c = m_c \delta_{0k}$ mass averaged equation is independent of the other polynomial basis components equations

Interior terms

• $\int_{\Omega_c} \mathbf{f} \cdot \mathbf{G} \nabla_X \sigma_q^c \, \mathrm{d} V$ is evaluated through the use of a two-dimensional high-order quadrature rule

Boundary terms

• $\int_{\partial\Omega_c} \overline{f} \cdot \sigma_q^c \mathbf{GN} dS$ required a specific treatment to ensure the GCL

• It remains to determine the numerical fluxes

DE LA RECHERCHE À C'HOUSTRIE

Entropic analysis

Entropic semi-discrete equation

- Fundamental assumption $\overline{P U} = \overline{P} \overline{U}$
- The use of variational formulations and Piola condition leads to

$$\int_{\Omega_c} \rho^0 \, \theta \frac{\mathrm{d} \, \eta}{\mathrm{d} t} \, \mathrm{d} \, V = \int_{\partial \Omega_c} (\overline{P} - P_h) (\boldsymbol{U}_h - \overline{\boldsymbol{U}}) \, \cdot \, \mathbf{G} \boldsymbol{N} \mathrm{d} \boldsymbol{S},$$

where η is the specific entropy and θ the absolute temperature defined by means of the Gibbs identity

Entropic semi-discrete equation

• A sufficient condition to satisfy
$$\int_{\Omega_c} \rho^0 \, heta rac{\mathrm{d} \, \eta}{\mathrm{d} t} \, \mathrm{d} V \geq 0$$
 is

$$\overline{P} - P_h = -Z \left(\overline{U} - U_h \right) \cdot \frac{GN}{\|GN\|} = -Z \left(\overline{U} - U_h \right) \cdot n,$$

where $Z \ge 0$ has the physical dimension of a density times a velocity

19/60

Riemann invariants limitation

Riemann invariants differentials associated to unit direction *n*

Being given the directions \boldsymbol{n} and $\boldsymbol{t} = \boldsymbol{e}_{z} \times \boldsymbol{n}$

- $d\alpha_t = d\boldsymbol{U} \cdot \boldsymbol{t}$
- $d\alpha_- = d(\frac{1}{\rho}) \frac{1}{\rho a} d\boldsymbol{U} \cdot \boldsymbol{n}$

•
$$d\alpha_+ = d(\frac{1}{\rho}) + \frac{1}{\rho a} d\boldsymbol{U} \cdot \boldsymbol{n}$$

•
$$\mathrm{d}\alpha_E = \mathrm{d}E - U \cdot \mathrm{d}U + P \,\mathrm{d}(\frac{1}{\rho})$$

a denotes the sound speed

Linearization around the mean values in cell Ω_c

•
$$\alpha_{t,h}^c = \boldsymbol{U}_h^c \cdot \boldsymbol{t}$$

• $\alpha_{-,h}^c = (\frac{1}{\rho})_h^c - \frac{1}{Z_c} \boldsymbol{U}_h^c \cdot \boldsymbol{n}$
• $\alpha_{+,h}^c = (\frac{1}{\rho})_h^c + \frac{1}{Z_c} \boldsymbol{U}_h^c \cdot \boldsymbol{n}$

•
$$\alpha_{E,h}^c = E_h^c - U_0^c \cdot U_h^c + P_0^c (\frac{1}{\rho})_h^c$$

where $Z_c = a_0^c \rho_0^c$ is the acoustic impedance

System variables polynomial approximation components

•
$$(\frac{1}{\rho})_k^c = \frac{1}{2}(\alpha_{+,k}^c + \alpha_{-,k}^c)$$

•
$$\boldsymbol{U}_{k}^{c} = \frac{1}{2} Z_{c} (\alpha_{+,k}^{c} - \alpha_{-,k}^{c}) \boldsymbol{n} + \alpha_{t,k}^{c} \boldsymbol{t}$$

•
$$E_k^c = \alpha_{E,k}^c + \frac{1}{2} Z_c (\alpha_{+,k}^c - \alpha_{-,k}^c) U_0^c \cdot n + \alpha_{t,k}^c U_0^c \cdot t - \frac{1}{2} P_0^c (\alpha_{+,k}^c + \alpha_{-,k}^c)$$

Unit direction ensuring symmetry preservation

•
$$\boldsymbol{n} = \frac{\boldsymbol{U}_0^c}{\|\boldsymbol{U}_0^c\|}$$
 and $\boldsymbol{t} = \boldsymbol{e}_z \times \frac{\boldsymbol{U}_0^c}{\|\boldsymbol{U}_0^c\|}$

Deformation gradient tensor discretization

Requirements

- **Consistency** of vector GNdS = nds at the interfaces of the cells
- Continuity of vector GN at cell interfaces on both sides of the interface
- Preservation of uniform flows, $G = JF^{-t}$ the cofactor matrix

$$\int_{\Omega_c} \mathbf{G} \nabla_X \sigma_q^c \, \mathrm{d} V = \int_{\partial \Omega_c} \sigma_q^c \, \mathbf{G} \mathbf{N} \mathrm{d} S \quad \Longleftrightarrow \quad \int_{\Omega_c} \sigma_q^c \, (\nabla_X \, \cdot \, \mathbf{G}) \, \mathrm{d} V = \mathbf{0}$$

Generalization of the weak form of the Piola compatibility condition

Tensor F discretization

- Discretization of tensor F by means of a mapping defined on triangular cells
- Partition of the polygonal cells in the initial configuration into non-overlapping triangles

$$\Omega_c = \bigcup_{i=1}^{ntri} \mathcal{T}_i^c$$

Deformation gradient tensor discretization

Continuous mapping function

• We develop Φ on the Finite Elements basis functions λ_p

$$\Phi_h^i(\boldsymbol{X},t) = \sum_{\rho} \lambda_{\rho}(\boldsymbol{X}) \; \Phi_{\rho}(t),$$

where the points p are control points including vertices in T_i

•
$$\Phi_{\rho}(t) = \Phi(\boldsymbol{X}_{\rho}, t) = \boldsymbol{X}_{\rho}$$

•
$$\frac{\mathrm{d} \Phi_{\rho}}{\mathrm{d} t} = \boldsymbol{U}_{\rho} \Longrightarrow \frac{\mathrm{d}}{\mathrm{d} t} \mathsf{F}_{i}(\boldsymbol{X}, t) = \sum_{\rho} \boldsymbol{U}_{\rho}(t) \otimes \boldsymbol{\nabla}_{X} \lambda_{\rho}(\boldsymbol{X})$$

G. KLUTH AND B. DESPRÉS, Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme. J. Comp. Phys., 2010.

Outcome

- Satisfaction of the Piola compatibility condition everywhere
- Consistency and continuity of the Eulerian normal GN

- 1 Introduction and preliminary results
- 2 2D Lagrangian hydrodynamics
- 3 DG discretization general framework
- 4 Second-order DG scheme
- 5 Third-order DG scheme
- 6 Conclusions and perspectives

DE LA RECHERCHE À CINOUSTRIE

Geometry discretization

P1 barycentric coordinate basis functions

• In a generic triangle T_i

$$\lambda_{p}(\boldsymbol{X}) = \frac{1}{2|\mathcal{T}_{i}|} [X(Y_{p^{+}} - Y_{p^{-}}) - Y(X_{p^{+}} - X_{p^{-}}) + X_{p^{+}}Y_{p^{-}} - X_{p^{-}}Y_{p^{+}}],$$

where p, p^+ and p^- are the counterclockwise ordered triangle nodes and $|T_i|$ the triangle volume

Deformation gradient tensor discretization

•
$$\Phi_h^i(\boldsymbol{X},t) = \sum_{\boldsymbol{p}\in\mathcal{P}(\mathcal{T}_i)} \lambda_{\boldsymbol{p}}(\boldsymbol{X}) \ \boldsymbol{x}_{\boldsymbol{p}}(t),$$

where $\mathcal{P}(\mathcal{T}_i)$ is the node set of \mathcal{T}_i

•
$$\frac{\mathrm{d}}{\mathrm{d}t}\mathsf{F}_{i}(t) = \frac{1}{|\mathcal{T}_{i}|}\sum_{\rho\in\mathcal{P}(\mathcal{T}_{i})}\boldsymbol{U}_{\rho}(t)\otimes L_{\rho i}\boldsymbol{N}_{\rho i}$$

Local variational formulations

DG discretization of the Lagrangian gas dynamics equations type

• $G_i^c = (JF^{-t})_i^c$ is constant on \mathcal{T}_i^c and $\nabla_X \sigma_q$ constant over Ω_c

•
$$\int_{\Omega_c} \rho^0 \frac{\mathrm{d}\,\phi}{\mathrm{d}t} \sigma_q^c \,\mathrm{d}\,V = -\sum_{i=1}^{ntri} \mathbf{G}_i^c \,\nabla_X \sigma_q^c \,. \int_{\mathcal{T}_i^c} \mathbf{f} \,\mathrm{d}\,V + \sum_{p \in \mathcal{P}(c)} \int_p^{p^+} \overline{\mathbf{f}} \,.\, \sigma_q^c \,\mathbf{G}\,\mathbf{N}\mathrm{d}L$$

Linear assumptions on face $f_{\rho\rho^+}$

•
$$\overline{\boldsymbol{f}}_{|_{pp^+}}^c(\zeta) = \boldsymbol{f}_{pc}^+(1-\zeta) + \boldsymbol{f}_{p^+c}^-\zeta,$$

where f_{pc}^+ and f_{p+c}^- are respectively the right and left nodal numerical fluxes

Linear property on face $f_{\rho\rho^+}$

•
$$\sigma_{q|_{pq^+}}^c(\zeta) = \sigma_q^c(\boldsymbol{X}_p)(1-\zeta) + \sigma_q^c(\boldsymbol{X}_{p^+})\zeta$$

where $\sigma_q^c(\mathbf{X}_p)$ and $\sigma_q^c(\mathbf{X}_{p^+})$ are the extrapolated values of the function σ_a^c

Initial configuration cell

DE LA RECHERCHE À UNIQUETRE

DG discretization

Fundamental assumptions

•
$$\boldsymbol{U}_{pc}^{\pm}=\boldsymbol{U}_{p}, \quad \forall \boldsymbol{c}\in\mathcal{C}(p)$$

$$\overline{PU} = \overline{P} \overline{U} \implies (PU)_{pc}^{\pm} = P_{pc}^{\pm} U_{p}$$

Procedure

Analytical integration + index permutation

Weighted corner normals

•
$$l_{pc}^{q} \boldsymbol{n}_{pc}^{q} = l_{pc}^{-,q} \boldsymbol{n}_{pc}^{-,q} + l_{pc}^{+,q} \boldsymbol{n}_{pc}^{+,q}$$

• $l_{pc}^{+,q} \boldsymbol{n}_{pc}^{+,q} = \frac{1}{6} \left(2\sigma_{q}^{c}(\boldsymbol{X}_{p}) + \sigma_{q}^{c}(\boldsymbol{X}_{p^{+}}) \right) l_{pp^{+}} \boldsymbol{n}_{pp^{+}}$
• $l_{pc}^{-,q} \boldsymbol{n}_{pc}^{-,q} = \frac{1}{6} \left(2\sigma_{q}^{c}(\boldsymbol{X}_{p}) + \sigma_{q}^{c}(\boldsymbol{X}_{p^{-}}) \right) l_{p^{-}p} \boldsymbol{n}_{p^{-}p^{-}}$

qth moment of the subcell forces

•
$$\mathbf{F}_{pc}^{q} = P_{pc}^{-} l_{pc}^{-,q} \mathbf{n}_{pc}^{-,q} + P_{pc}^{+} l_{pc}^{+,q} \mathbf{n}_{pc}^{+,q}$$

Local variational formulations

Semi-discrete equations GCL compatible

•
$$\int_{\Omega_c} \rho^0 \frac{\mathrm{d}}{\mathrm{d}t} (\frac{1}{\rho}) \sigma_q^c \,\mathrm{d}V = -\sum_{i=1}^{ntri} \mathbf{G}_i^c \nabla_X \sigma_q^c \cdot \int_{\mathcal{T}_i^c} \mathbf{U} \mathrm{d}V + \sum_{p \in \mathcal{P}(c)} \mathbf{U}_p \cdot I_{pc}^q \mathbf{n}_{pc}^q$$

•
$$\int_{\Omega_c} \rho^0 \frac{\mathrm{d}\mathbf{U}}{\mathrm{d}t} \sigma_q^c \,\mathrm{d}V = \sum_{i=1}^{ntri} \mathbf{G}_i^c \nabla_X \sigma_q^c \int_{\mathcal{T}_i^c} P \mathrm{d}V - \sum_{p \in \mathcal{P}(c)} \mathbf{F}_{pc}^q$$

•
$$\int_{\Omega_c} \rho^0 \frac{\mathrm{d}\mathbf{E}}{\mathrm{d}t} \sigma_q^c \,\mathrm{d}V = \sum_{i=1}^{ntri} \mathbf{G}_i^c \nabla_X \sigma_q^c \cdot \int_{\mathcal{T}_i^c} P \,\mathbf{U} \mathrm{d}V - \sum_{p \in \mathcal{P}(c)} \mathbf{U}_p \cdot \mathbf{F}_{pc}^q$$

First moment equations

•
$$m_c \frac{\mathrm{d}}{\mathrm{d}t} (\frac{1}{\rho})_0^c = \sum_{p \in \mathcal{P}(c)} \boldsymbol{U}_p \cdot \boldsymbol{I}_{pc}^0 \boldsymbol{n}_{pc}^0$$

• $m_c \frac{\mathrm{d} E_0^c}{\mathrm{d}t} = -\sum_{p \in \mathcal{P}(c)} \boldsymbol{U}_p \cdot \boldsymbol{F}_{pc}^0$

•
$$m_c \frac{\mathrm{d} \boldsymbol{U}_0^c}{\mathrm{d} t} = -\sum_{\boldsymbol{p} \in \mathcal{P}(c)} \boldsymbol{F}_{\boldsymbol{p} c}^0$$

We recover the EUCCLHYD scheme

Nodal solvers

$q^{\rm th}$ moment of the subcell forces

• The use of $\overline{P} = P_h^c - Z_c (\overline{U} - U_h^c) \cdot n$ to calculate F_{pc}^q leads to

$$\boldsymbol{F}_{pc}^{q} = P_{h}^{c}(\boldsymbol{X}_{p}, t) \, \boldsymbol{I}_{pc}^{q} \boldsymbol{n}_{pc}^{q} - \boldsymbol{\mathsf{M}}_{pc}^{q} \left(\boldsymbol{U}_{p} - \boldsymbol{U}_{h}^{c}(\boldsymbol{X}_{p}, t) \right),$$

where
$$\mathsf{M}^q_{
ho c} = Z_c \, \left(\mathit{l}^{-,q}_{
ho c} \pmb{n}^{-,q}_{
ho c} \otimes \pmb{n}^{-,0}_{
ho c} + \mathit{l}^{+,q}_{
ho c} \pmb{n}^{+,q}_{
ho c} \otimes \pmb{n}^{+,0}_{
ho c}
ight)$$

Momentum and total energy conservation

•
$$\sum_{c \in \mathcal{C}(p)} F_{pc}^0 = \mathbf{0}$$

Nodal velocity

•
$$(\sum_{c \in \mathcal{C}(\rho)} M_{\rho c}^{0}) \boldsymbol{U}_{\rho} = \sum_{c \in \mathcal{C}(\rho)} \left[P_{h}^{c}(\boldsymbol{X}_{\rho}, t) I_{\rho c}^{0} \boldsymbol{n}_{\rho c}^{0} + \mathsf{M}_{\rho c}^{0} \boldsymbol{U}_{h}^{c}(\boldsymbol{X}_{\rho}, t) \right]$$

Numerical results

Sedov point blast problem on a Cartesian grid

FIGURE: Point blast Sedov problem on a Cartesian grid made of 30×30 cells: density.

29/601

Numerical results

Sedov point blast problem on unstructured grids

FIGURE: Unstructured initial grids for the point blast Sedov problem.

Sedov point blast problem a polygonal grid

FIGURE: Point blast Sedov problem on an unstructured grid made of 775 polygonal cells: density map.

Sedov point blast problem on a triangular grid

FIGURE: Point blast Sedov problem on an unstructured grid made of 1100 triangular cells: density map.

DE LA RECHERCHE À C'HOUSTRIE

Numerical results

Noh problem

FIGURE: Noh problem on a Cartesian grid made of 50 \times 50 cells: density.

Taylor-Green vortex problem, introduced by R. Rieben (LLNL)

(a) Second-order scheme.

(b) Exact solution.

FIGURE: Motion of a 10 \times 10 Cartesian mesh through a T.-G. vortex, at t = 0.75.

34/60

Rate of convergence computed on the pressure in the case of the Taylor-Green vortex

	L ₁		L ₂		L_{∞}	
h	$E_{L_1}^h$	$q_{L_1}^h$	$E_{L_2}^h$	$q_{L_2}^h$	$E_{L_{\infty}}^{h}$	$q^h_{L_{\infty}}$
$\frac{1}{20}$	1.32E-2	1.78	1.96E-2	1.56	7.41E-2	1.03
$\frac{1}{40}$	3.84E-3	1.93	6.66E-3	1.89	3.63E-2	1.58
$\frac{1}{80}$	1.01E-3	1.99	1.80E-3	1.98	1.21E-2	1.87
$\frac{1}{160}$	2.55E-4	2.00	4.57E-4	2.00	3.31E-3	1.97
$\frac{1}{320}$	6.38E-5	-	1.14E-4	-	8.47E-4	-

TABLE: Second-order MUSCL scheme without limitation at time t = 0.6.

	L ₁		L ₂		L_{∞}	
h	$E_{L_1}^h$	$q_{L_1}^h$	$E_{L_2}^h$	$q_{L_2}^h$	$E_{L_{\infty}}^{h}$	$q^h_{L_{\infty}}$
$\frac{1}{20}$	8.98E-3	1.88	1.51Ē-2	1.75	6.73E-2	1.27
$\frac{\overline{1}}{40}$	2.44E-3	1.94	4.48E-3	1.95	2.79E-2	1.68
$\frac{1}{80}$	6.36E-4	2.00	1.16E-3	2.00	8.68E-3	1.95
$\frac{1}{160}$	1.59E-4	2.01	2.90E-4	2.01	2.24E-3	2.01
$\frac{1}{320}$	3.94E-5	-	7.18E-5	-	5.54E-4	-

TABLE: Second-order DG scheme without limitation at time t = 0.6.

- 1 Introduction and preliminary results
- 2 2D Lagrangian hydrodynamics
- 3 DG discretization general framework
- 4 Second-order DG scheme
- 5 Third-order DG scheme
- 6 Conclusions and perspectives

DE LA RECHERCHE À UNIQUETRIE

Curvilinear elements motivation

V. DOBREV, T. ELLIS, T. KOLEV AND R. RIEBEN, *High Order Curvilinear Finite Elements for Lagrangian Hydrodynamics. Part I: General Framework*, 2010. Presentation available at https://computation.llnl.gov/casc/blast/blast.html

Geometry discretization

P2 Finite Elements basis functions

The P₂ barycentric coordinate functions μ_p write

$$\mu_{p} = (\lambda_{p})^{2}, \ \mu_{p^{+}} = (\lambda_{p^{+}})^{2}, \ \mu_{p^{-}} = (\lambda_{p^{-}})^{2}, \\ \mu_{Q} = 2\lambda_{p}\lambda_{p^{+}}, \ \mu_{Q^{+}} = 2\lambda_{p^{+}}\lambda_{p^{-}}, \ \mu_{Q^{-}} = 2\lambda_{p^{-}}\lambda_{p},$$

where $\{\lambda_l\}_{l \in \mathcal{P}(\mathcal{T}_l)}$ is the P_1 Finite Elements linear basis

Mapping discretization

$$\Phi(\boldsymbol{X},t) = \sum_{q} \boldsymbol{x}_{q}(t) \, \mu_{q}(\boldsymbol{X}) = \sum_{\rho \in \mathcal{P}(\mathcal{T}_{i})} \left[\boldsymbol{x}_{\rho}(t) \, (\lambda_{\rho}(\boldsymbol{X}))^{2} + 2 \boldsymbol{x}_{Q}(t) \, \lambda_{\rho}(\boldsymbol{X}) \lambda_{\rho}^{+}(\boldsymbol{X}) \right]$$

Deformation gradient tensor discretization

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathsf{F}_{i}(\boldsymbol{X},t) = \frac{2}{|\mathcal{T}_{i}|} \sum_{\rho \in \mathcal{P}(\mathcal{T}_{i})} \lambda_{\rho}(\boldsymbol{X}) \left[\boldsymbol{U}_{\rho} \otimes L_{\rho c} \boldsymbol{N}_{\rho c} + \boldsymbol{U}_{Q} \otimes L_{\rho^{+} c} \boldsymbol{N}_{\rho^{+} c} + \boldsymbol{U}_{Q}^{-} \otimes L_{\rho^{-} c} \boldsymbol{N}_{\rho^{-} c} \right]$$

Geometric consideration

Mapping of the fluid flow: transformation of T_i into τ_i

Bezier curves

• Given the three points p, Q and p^+ , and $\zeta \in [0, 1]$

$$\begin{aligned} \boldsymbol{x}(\zeta) &= (1-\zeta)^2 \boldsymbol{x}_p + 2\zeta(1-\zeta) \boldsymbol{x}_Q + \zeta^2 \boldsymbol{x}_{p^+} \\ &= (1-\zeta)(1-2\zeta) \boldsymbol{x}_p + 4\zeta(1-\zeta) \boldsymbol{x}_m + \zeta(2\zeta-1) \boldsymbol{x}_{p^+} \end{aligned}$$

• Midpoint $x_m = x(\frac{1}{2}) = \frac{2x_Q + x_p + x_{p^+}}{4}$

• Tangent
$$tdI = \frac{d\boldsymbol{x}}{d\zeta} d\zeta = 2\left((1-\zeta)(\boldsymbol{x}_Q - \boldsymbol{x}_p) + \zeta(\boldsymbol{x}_{p^+} - \boldsymbol{x}_Q)\right) d\zeta$$

DE LA RECHERCHE À UNIQUITAT

DG discretization

Quadratic assumptions on face $f_{\rho\rho^+}$

•
$$f_{|_{pp^+}}(\zeta) = (1-\zeta)(1-2\zeta) f_{pc}^+ + 4\zeta(1-\zeta) f_{mc} + \zeta(2\zeta-1) f_{p+c}^-$$

Linear and quadratic properties on face f_{pp^+}

• G
$$N dL_{|_{pp^+}}(\zeta) = 2 ((1 - \zeta) I_{pQ} n_{pQ} + \zeta I_{Qp^+} n_{Qp^+}) d\zeta$$

• $\sigma^c_{q|_{pp^+}}(\zeta) = (1 - \zeta)(1 - 2\zeta) \sigma^c_q(\mathbf{X}_p) + 4\zeta(1 - \zeta) \sigma^c_q(\mathbf{X}_m) + \zeta(2\zeta - 1) \sigma^c_q(\mathbf{X}_{p^+})$

DE LA RECHERCHE À UNIQUITAIL

DG discretization

Semi-discrete equations GCL compatible

$$\int_{\Omega_{c}} \rho^{0} \frac{\mathrm{d}}{\mathrm{d}t} (\frac{1}{\rho}) \sigma_{q}^{c} \mathrm{d}V = -\sum_{i=1}^{ntri} \int_{\mathcal{T}_{i}^{c}} \mathbf{U} \cdot \mathbf{G} \nabla_{X} \sigma_{q}^{c} \mathrm{d}V + \sum_{p \in \mathcal{P}(c)} \frac{1}{3} \mathbf{U}_{p} \cdot l_{pc}^{q} \mathbf{n}_{pc}^{q} + \sum_{m \in \mathcal{M}(c)} \frac{2}{3} \mathbf{U}_{m} \cdot l_{mc}^{q} \mathbf{n}_{mc}^{q}$$

$$\int_{\Omega_{c}} \rho^{0} \frac{\mathrm{d}\mathbf{U}}{\mathrm{d}t} \sigma_{q}^{c} \mathrm{d}V = \sum_{i=1}^{ntri} \int_{\mathcal{T}_{i}^{c}} P \mathbf{G} \nabla_{X} \sigma_{q}^{c} \mathrm{d}V - \sum_{p \in \mathcal{P}(c)} \frac{1}{3} \mathbf{F}_{pc}^{q} - \sum_{m \in \mathcal{M}(c)} \frac{2}{3} \mathbf{F}_{mc}^{q}$$

$$\int_{\Omega_{c}} \rho^{0} \frac{\mathrm{d}\mathbf{E}}{\mathrm{d}t} \sigma_{q}^{c} \mathrm{d}V = -\sum_{i=1}^{ntri} \int_{\mathcal{T}_{i}^{c}} P \mathbf{U} \cdot \mathbf{G} \nabla_{X} \sigma_{q}^{c} \mathrm{d}V + \sum_{p \in \mathcal{P}(c)} \frac{1}{3} \mathbf{U}_{p} \cdot \mathbf{F}_{pc}^{q} + \sum_{m \in \mathcal{M}(c)} \frac{2}{3} \mathbf{U}_{m} \cdot \mathbf{F}_{mc}^{q}$$
Equation on the first moment of the specific volume
$$\bullet \frac{\mathrm{d}|\omega_{c}|}{\mathrm{d}t} = \int_{\partial\Omega_{c}} \overline{\mathbf{U}} \cdot \mathbf{GN} \mathrm{d}L = \sum_{p \in \mathcal{P}(c)} \frac{1}{3} \mathbf{U}_{p} \cdot l_{Q-Q} \mathbf{n}_{Q-Q} + \sum_{m \in \mathcal{M}(c)} \frac{2}{3} \mathbf{U}_{m} \cdot l_{pp^{+}} \mathbf{n}_{pp^{+}}$$

B. BOUTIN, E. DERIAZ, P. HOCH, P. NAVARO, Extension of ALE methodology to unstructured conical meshes, ESAIM: Proceedings, 2010.

Nodal and midpoint solvers

Subcell forces definitions

•
$$\mathbf{F}_{pc}^{q} = P_{pc}^{-} I_{pc}^{-,q} \mathbf{n}_{pc}^{-,q} + P_{pc}^{+} I_{pc}^{+,q} \mathbf{n}_{pc}^{+,q}$$
 and $\mathbf{F}_{mc}^{q} = P_{mc} I_{mc}^{q} \mathbf{n}_{pc}^{q}$

 q^{th} moment of the nodal and midpoint subcell forces

• The use of $\overline{P} = P_h^c - Z_c (\overline{U} - U_h^c)$. *n* to calculate F_{pc}^q and F_{mc}^q leads to

$$\boldsymbol{F}_{pc}^{q} = \boldsymbol{P}_{h}^{c}(\boldsymbol{X}_{p},t) \, \boldsymbol{I}_{pc}^{q} \boldsymbol{n}_{pc}^{q} - \boldsymbol{\mathsf{M}}_{pc}^{q} \, (\boldsymbol{U}_{p} - \boldsymbol{U}_{h}^{c}(\boldsymbol{X}_{p},t)),$$

$$\boldsymbol{F}_{mc}^{q} = \boldsymbol{P}_{h}^{c}(\boldsymbol{X}_{m},t) \, \boldsymbol{I}_{mc}^{q} \boldsymbol{n}_{mc}^{q} - \boldsymbol{\mathsf{M}}_{mc}^{q} \left(\boldsymbol{U}_{m} - \boldsymbol{U}_{h}^{c}(\boldsymbol{X}_{m},t) \right),$$

$$\mathsf{M}^{q}_{pc} = Z_{c} \left(l^{-,q}_{pc} \boldsymbol{n}^{-,q}_{pc} \otimes \boldsymbol{n}^{-,0}_{pc} + l^{+,q}_{pc} \boldsymbol{n}^{+,q}_{pc} \otimes \boldsymbol{n}^{+,0}_{pc} \right) \text{ and } \mathsf{M}^{q}_{mc} = Z_{c} \, l^{q}_{mc} \boldsymbol{n}^{q}_{mc} \otimes \boldsymbol{n}^{0}_{mc}$$

Momentum and total energy conservation

•
$$\sum_{c \in \mathcal{C}(p)} \boldsymbol{F}_{pc}^{0} = \boldsymbol{0}$$
 and $\boldsymbol{F}_{mL}^{0} + \boldsymbol{F}_{mR}^{0} = \boldsymbol{0}$

Nodal and midpoint solvers

Nodal velocity

•
$$M_p \boldsymbol{U}_p = \sum_{c \in \mathcal{C}(p)} \left[P_h^c(\boldsymbol{X}_p, t) \, I_{pc}^0 \boldsymbol{n}_{pc}^0 + \mathsf{M}_{pc}^0 \, \boldsymbol{U}_h^c(\boldsymbol{X}_p, t) \right],$$

where
$$M_p = \sum_{c \in C(p)} M_{pc}^0$$
 is a **positive definite** matrix

Midpoint velocity

•
$$\mathsf{M}_m \ \boldsymbol{U}_m = \mathsf{M}_m \left(\frac{Z_L \ \boldsymbol{U}_h^L(\boldsymbol{X}_m) + Z_R \ \boldsymbol{U}_h^R(\boldsymbol{X}_m)}{Z_L + Z_R} \right) - \frac{P_h^R(\boldsymbol{X}_m) - P_h^L(\boldsymbol{X}_m)}{Z_L + Z_R} \ I_{mc}^0 \ \boldsymbol{n}_{mc}^0,$$

where $M_m = \frac{1}{Z_L} M_{mL}^0 = \frac{1}{Z_R} M_{mR}^0 = I_{mc}^0 \boldsymbol{n}_{mc}^0 \otimes \boldsymbol{n}_{mc}^0$ is **positive semi-definite**

1D approximate Riemann problem solution

•
$$(\boldsymbol{U}_m \cdot \boldsymbol{n}_{mc}^0) = \left(\frac{Z_L \, \boldsymbol{U}_h^L(\boldsymbol{X}_m) + Z_R \, \boldsymbol{U}_h^R(\boldsymbol{X}_m)}{Z_L + Z_R}\right) \cdot \boldsymbol{n}_{mc}^0 - \frac{P_h^R(\boldsymbol{X}_m) - P_h^L(\boldsymbol{X}_m)}{Z_L + Z_R}$$

42/60

Nodal and midpoint solvers

Tangential component of the midpoint velocity

•
$$(\boldsymbol{U}_m \cdot \boldsymbol{t}_{mc}^0) = \left(\frac{Z_L \, \boldsymbol{U}_h^L(\boldsymbol{X}_m) + Z_R \, \boldsymbol{U}_h^R(\boldsymbol{X}_m)}{Z_L + Z_R}\right) \cdot \boldsymbol{t}_{mc}^0$$

Midpoint velocity

•
$$\boldsymbol{U}_m = \frac{Z_L \boldsymbol{U}_h^L(\boldsymbol{X}_m) + Z_R \boldsymbol{U}_h^R(\boldsymbol{X}_m)}{Z_L + Z_R} - \frac{P_h^R(\boldsymbol{X}_m) - P_h^L(\boldsymbol{X}_m)}{Z_L + Z_R} \boldsymbol{n}_{mc}^0$$

• $U_Q = \frac{4U_m - U_p - U_{p^+}}{2}$

Interior points velocity • $U_i = U_h^c(X_i, t)$

DE LA RECHERCHE À UNIQUETRI

Deformed initial mesh

Composed derivatives

•
$$\mathsf{F}_{T} = \nabla_{X_{r}} \Phi_{T}(\boldsymbol{X}_{r}, t)$$

 $= \nabla_{X} \Phi_{H}(\boldsymbol{X}, t) \circ \nabla_{X_{r}} \Phi_{0}(\boldsymbol{X}_{r})$
 $= \mathsf{F}_{H} \mathsf{F}_{0}$
• $J_{T}(\boldsymbol{X}_{r}, t) = J_{H}(\boldsymbol{X}, t) J_{0}(\boldsymbol{X}_{r})$

Mass conservation

•
$$\rho^0 J_0 = \rho J_T$$

Modification of the mass matrix

•
$$\int_{\omega_c} \rho \frac{\mathrm{d}\,\psi_h^c}{\mathrm{d}t} \,\sigma_q \,\mathrm{d}\omega = \sum_{k=0}^K \frac{\mathrm{d}\,\psi_k}{\mathrm{d}t} \,\int_{\Omega_c^r} \rho^0 \,J_0 \,\sigma_q \,\sigma_k \,\mathrm{d}\Omega^r \quad \text{time rate of change of successive moments of function } \psi$$

 New definitions of mass matrix, of mass averaged value and of the associated scalar product

44/60

One angular cell polar Sod shock tube problem

FIGURE: Third-order DG solution for a Sod shock tube problem on a polar grid made of 100×1 cells.

DE LA RECHERCHE À UNIQUETRE

Numerical results

Symmetry preservation

FIGURE: Polar initial grids for the Sod shock tube problem.

DE LA RECHERCHE À L'INDUSTRI

Numerical results

Symmetry preservation

FIGURE: Sod shock tube problem on a polar grid made of 100×3 cells.

ВЕ СА ВЕСНЕВОНЕ À С'НОУЗТВІ

Numerical results

Symmetry preservation

FIGURE: Third-order DG solution for a Sod shock tube problem on a polar grid made of 100×3 cells.

DE LA RECHERCHE À L'INDUSTRI

Numerical results

Symmetry preservation

FIGURE: Sod shock tube problem on a polar grid made of 100 \times 3 non-uniform cells.

ВЕ СА ВЕСНЕВОНЕ À С'НОУЗТВІ

Numerical results

Symmetry preservation

FIGURE: Third-order DG solution for a Sod shock tube problem on a polar grid made of 100×3 non-uniform cells.

Variant of the incompressible Gresho vortex problem

(a) First-order scheme.

(b) Second-order scheme.

FIGURE: Motion of a polar grid defined in polar coordinates by $(r, \theta) \in [0, 1] \times [0, 2\pi]$, with 40 × 18 cells at t = 1: zoom on the zone $(r, \theta) \in [0, 0.5] \times [0, 2\pi]$.

Variant of the incompressible Gresho vortex problem

(a) Third-order scheme.

(b) Exact solution.

FIGURE: Motion of a polar grid defined in polar coordinates by $(r, \theta) \in [0, 1] \times [0, 2\pi]$, with 40 × 18 cells at t = 1: zoom on the zone $(r, \theta) \in [0, 0.5] \times [0, 2\pi]$.

Variant of the Gresho vortex problem

FIGURE: Gresho variant problem on a polar grid defined in polar coordinates by $(r, \theta) \in [0, 1] \times [0, 2\pi]$, with 40 × 18 cells at t = 1.

DE LA RECHERCHE À CINIDUSTRIE

Numerical results

Variant of the Gresho vortex problem

FIGURE: Gresho variant problem on a polar grid defined in polar coordinates by $(r, \theta) \in [0, 1] \times [0, 2\pi]$, with 40 × 18 cells at t = 1: density profile.

Kidder isentropic compression

FIGURE: Third-order DG solution for a Kidder isentropic compression problem on a polar grid made of 10×3 cells: pressure map.

DE LA RECHERCHE À UNIDUSTRIE

Numerical results

Kidder isentropic compression

FIGURE: Third-order DG solution for a Kidder isentropic compression problem on a polar grid made of 10×3 cells: density profile.

Taylor-Green vortex problem

(a) Third-order scheme.

(b) Exact solution.

FIGURE: Motion of a 10 \times 10 Cartesian mesh through a T.-G. vortex, at t = 0.75.

57/60

Rate of convergence computed on the pressure in the case of the Taylor-Green vortex

	<i>L</i> ₁		L ₂		L_{∞}	
h	$E_{L_1}^h$	$q_{L_1}^h$	$E_{L_2}^h$	$q_{L_2}^h$	$E_{L_{\infty}}^{h}$	$q^h_{L_{\infty}}$
$\frac{1}{10}$	2.50E-2	1.48	3.71E-2	1.30	1.72E-1	1.35
$\frac{1}{20}$	8.98E-3	1.88	1.51E-2	1.75	6.73E-2	1.27
$\frac{1}{40}$	2.44E-3	1.94	4.48E-3	1.95	2.79E-2	1.68
$\frac{1}{80}$	6.36E-4	2.00	1.16E-3	2.00	8.68E-3	1.95
$\frac{1}{160}$	1.59E-4	2.01	2.90E-4	2.01	2.24E-3	2.01

TABLE: Second-order DG scheme without limitation at time t = 0.6.

	L ₁		L ₂		L_{∞}	
h	$E_{L_1}^h$	$q_{L_1}^h$	$E_{L_2}^h$	$q_{L_2}^h$	$E_{L_{\infty}}^{h}$	$q^h_{L_{\infty}}$
$\frac{1}{10}$	4.39E-3	3.00	7.73Ē-3	2.68	3.90E-2	1.93
$\frac{1}{20}$	5.50E-4	3.04	1.21E-3	3.10	1.03E-2	2.98
$\frac{1}{40}$	6.68E-5	2.91	1.40E-4	2.87	1.30E-3	2.66
$\frac{1}{80}$	8.90E-6	2.89	1.92E-5	2.83	2.11E-4	2.74
$\frac{1}{160}$	1.20E-6	-	2.70E-6	-	3.16E-5	-

TABLE: Third-order DG scheme without limitation at time t = 0.6.

Rate of convergence computed on the pressure in the case of the Taylor-Green vortex

	L ₁		L ₂		L_{∞}	
h	$E_{L_1}^h$	$q_{L_1}^h$	$E_{L_2}^h$	$q_{L_2}^h$	$E_{L_{\infty}}^{h}$	$q^h_{L_{\infty}}$
$\frac{1}{10}$	2.67E-4	2.96	3.36Ē-4	2.94	1.21E-3	2.86
$\frac{1}{20}$	3.43E-5	2.97	4.36E-5	2.96	1.66E-4	2.93
$\frac{1}{40}$	4.37E-6	2.99	5.59E-6	2.98	2.18E-5	2.96
$\frac{1}{80}$	5.50E-7	2.99	7.06E-7	2.99	2.80E-6	2.99
$\frac{1}{160}$	6.91E-8	-	8.87E-8	-	3.53E-7	-

TABLE: Third-order DG scheme without limitation at time t = 0.1.

- 1 Introduction and preliminary results
- 2 2D Lagrangian hydrodynamics
- 3 DG discretization general framework
- 4 Second-order DG scheme
- 5 Third-order DG scheme
- 6 Conclusions and perspectives

E LA RECHERCHE À L'INDUSTRIE

Conclusions and perspectives

Conclusions

- DG schemes up to 3rd order
 - 1D and 2D scalar conservation laws on general unstructured grids
 - 1D systems of conservation laws
 - 2D gas dynamics system in a total Lagrangian formalism
- GCL and Piola compatibility condition ensured by construction
- Dramatic improvement of symmetry preservation by means of third-order DG scheme

Perspectives

- High-order limitation on curved geometries
- Improvement in midpont solver definition
- Code parallelization
- Study on computational cost and time
- Development of a 3rd order DG scheme on moving mesh
- Extension to 3D
- Extension to ALE and solid dynamics

- F. VILAR, P.-H. MAIRE AND R. ABGRALL, Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics. Computers and Fluids, 2010.
- F. VILAR, Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics. Computers and Fluids, 2012.
- F. VILAR, P.-H. MAIRE AND R. ABGRALL, *Third order Cell-Centered DG* scheme for Lagrangian hydrodynamics on general unstructured Bezier grids. Article in preparation.

DE LA RECHERCHE À UNIQUETRE

Thank you

Third-order polynomial Taylor basis

Taylor expansion on the cell, located at the center of mass \mathcal{X}_c

•
$$\phi(\mathbf{X}) = \phi(\mathbf{X}_c) + (\mathbf{X} - \mathbf{X}_c) \frac{\partial \phi}{\partial \mathbf{X}} + (\mathbf{Y} - \mathbf{Y}_c) \frac{\partial \phi}{\partial \mathbf{Y}} + \frac{1}{2} (\mathbf{X} - \mathbf{X}_c)^2 \frac{\partial^2 \phi}{\partial \mathbf{X}^2} + (\mathbf{X} - \mathbf{X}_c) (\mathbf{Y} - \mathbf{Y}_c) \frac{\partial^2 \phi}{\partial \mathbf{X} \partial \mathbf{Y}} + \frac{1}{2} (\mathbf{Y} - \mathbf{Y}_c)^2 \frac{\partial^2 \phi}{\partial \mathbf{Y}^2} + o(\|\mathbf{X} - \mathbf{X}_c\|^2)$$

Polynomial basis functions

$$\sigma_0^c = 1, \qquad \sigma_3^c = \frac{1}{2} \left[\left(\frac{X - \chi_c}{\Delta X_c} \right)^2 - \left\langle \left(\frac{X - \chi_c}{\Delta X_c} \right)^2 \right\rangle_c \right], \\ \sigma_1^c = \frac{X - \chi_c}{\Delta X_c}, \qquad \sigma_4^c = \frac{(X - \chi_c)(Y - \mathcal{Y}_c)}{\Delta X_c \Delta Y_c} - \left\langle \frac{(X - \chi_c)(Y - \mathcal{Y}_c)}{\Delta X_c \Delta Y_c} \right\rangle_c \\ \sigma_2^c = \frac{Y - \mathcal{Y}_c}{\Delta Y_c}, \qquad \sigma_5^c = \frac{1}{2} \left[\left(\frac{Y - \mathcal{Y}_c}{\Delta Y_c} \right)^2 - \left\langle \left(\frac{Y - \mathcal{Y}_c}{\Delta Y_c} \right)^2 \right\rangle_c \right].$$

Polynomial apprixation function components

•
$$\phi_0^c = \langle \phi \rangle_c, \ \phi_1^c = \Delta X_c \frac{\partial \phi}{\partial X} (\mathcal{X}_c), \ \phi_2^c = \Delta Y_c \frac{\partial \phi}{\partial Y} (\mathcal{X}_c), \ \phi_3^c = (\Delta X_c)^2 \frac{\partial^2 \phi}{\partial X^2} (\mathcal{X}_c), \ \phi_4^c = \Delta X_c \Delta Y_c \frac{\partial^2 \phi}{\partial X \partial Y} (\mathcal{X}_c), \ \phi_5^c = (\Delta Y_c)^2 \frac{\partial^2 \phi}{\partial Y^2} (\mathcal{X}_c)$$

Vertex-based hierarchical slope limiter

Third-order DG scheme limitation

•
$$\phi_h^c = \phi_0^c + c_1 (\phi_1^c \sigma_1^c + \phi_2^c \sigma_2^c) + c_2 (\phi_3^c \sigma_3^c + \phi_4^c \sigma_4^c + \phi_5^c \sigma_5^c)$$

where c_1 and c_2 are the limiting coefficients

Linear reconstruction

•
$$\phi^{(1)} = \phi_0^c + c_1 \left(\phi_1^c \frac{X - X_c}{\Delta X_c} + \phi_2^c \frac{Y - Y_c}{\Delta Y_c} \right)$$

• $\phi_X^{(2)} = \Delta X_c \frac{\partial \phi_n^c}{\partial X} = \phi_1^c + c_X \left(\phi_3^c \frac{X - X_c}{\Delta X_c} + \phi_4^c \frac{Y - Y_c}{\Delta Y_c} \right)$
• $\phi_Y^{(2)} = \Delta Y_c \frac{\partial \phi_n^c}{\partial Y} = \phi_2^c + c_Y \left(\phi_4^c \frac{X - X_c}{\Delta X_c} + \phi_5^c \frac{Y - Y_c}{\Delta Y_c} \right)$

Limiting coefficient

- $c_2 = \min(c_X, c_Y)$
- $c_1 = \max(c_1, c_2)$

Smooth extrema preservation
DE LA RECHERCHE À UNIQUETRI

Riemann invariants limitation

Riemann invariants differentials

- $d\alpha_t = d\boldsymbol{U} \cdot \boldsymbol{t},$
- $d\alpha_{-} = dP \rho a dU \cdot n$,
- $d\alpha_+ = dP + \rho a dU \cdot n$,
- $\mathrm{d}\alpha_E = \mathrm{d}E \boldsymbol{U} \cdot \mathrm{d}\boldsymbol{U} + \boldsymbol{P} \,\mathrm{d}(\frac{1}{\rho}),$

where *n* denotes a unit vector and $t = e_z \times n$

Isentropic flow

•
$$dP = -\rho^2 a^2 d(\frac{1}{\rho})$$

New Riemann invariants differentials

• $d\alpha_t = d\boldsymbol{U} \cdot \boldsymbol{t}$,

•
$$d\alpha_- = d(\frac{1}{\rho}) - \frac{1}{\rho a} d\boldsymbol{U} \cdot \boldsymbol{n}$$

• $d\alpha_+ = d(\frac{1}{\rho}) + \frac{1}{\rho a} d\boldsymbol{U} \cdot \boldsymbol{n},$

•
$$d\alpha_E = dE - U \cdot dU + P d(\frac{1}{\rho})$$

22 2nd order DG discretization

DG discretization of the Lagrangian gas dynamics equations type

•
$$G_i^c = (JF^{-t})_i^c$$
 is constant on \mathcal{T}_i^c and $\nabla_X \sigma_q$ over Ω_c

•
$$\int_{\Omega_c} \rho^0 \frac{\mathrm{d}\,\phi}{\mathrm{d}t} \sigma_q^c \,\mathrm{d}\,V = -\sum_{i=1}^{ntri} \mathsf{G}_i^c \,\nabla_X \sigma_q^c \cdot \int_{\mathcal{T}_i^c} \mathbf{f} \,\mathrm{d}\,V + \sum_{p \in \mathcal{P}(c)} \int_p^{p^+} \overline{\mathbf{f}} \cdot \sigma_q^c \,\mathbf{G}\,\mathbf{N}\mathrm{d}L$$

•
$$\int_{\Omega_c} \rho^0 \frac{\mathrm{d}\,\psi}{\mathrm{d}t} \sigma_q^c \,\mathrm{d}\,V = -\sum_{i=1}^{ntri} \mathsf{G}_i^c \,\nabla_X \sigma_q^c \,\int_{\mathcal{T}_i^c} h \,\mathrm{d}\,V + \sum_{p \in \mathcal{P}(c)} \int_p^{p^+} \overline{h} \,\sigma_q^c \,\mathbf{G}\,\mathbf{N}\mathrm{d}L$$

Linear assumptions on face f_{pp^+}

•
$$\overline{f}_{|_{pp^+}}^c(\zeta) = f_{pc}^+(1-\zeta) + f_{p^+c}^-\zeta$$

• $\overline{h}_{|_{pp^+}}^c(\zeta) = h_{pc}^+(1-\zeta) + h_{p^+c}^-\zeta$

Linear property on face f_{pp^+}

•
$$\sigma_{q|_{pp^+}}^c(\zeta) = \sigma_q^c(\boldsymbol{X}_p)(1-\zeta) + \sigma_q^c(\boldsymbol{X}_{p^+})\zeta$$

DE LA RECHERCHE À CHIQUSTRIE

2nd order DG discretization

Analytical integration

•
$$\int_{p}^{p^{+}} \overline{f} \sigma_{q}^{c} \cdot \mathbf{G} \mathbf{N} dL = \left(\int_{0}^{1} \overline{f}_{|_{pp^{+}}}(\zeta) \sigma_{q|_{pp^{+}}}^{c}(\zeta) d\zeta \right) \cdot \mathbf{G}_{|_{pp^{+}}} L_{pp^{+}} \mathbf{N}_{pp^{+}}$$

•
$$\mathbf{G}_{|_{pp^{+}}} L_{pp^{+}} \mathbf{N}_{pp^{+}} = l_{pp^{+}} \mathbf{n}_{pp^{+}}$$
 Eulerian normal of face $f_{pp^{+}}$
•
$$\int_{\partial \Omega_{c}} \overline{f} \sigma_{q}^{c} \cdot \mathbf{G} \mathbf{N} dL = \sum_{p \in \mathcal{P}(c)} \frac{1}{6} \left[f_{pc}^{+} \cdot \left(2\sigma_{q}^{c}(\mathbf{X}_{p}) + \sigma_{q}^{c}(\mathbf{X}_{p^{+}}) \right) l_{pp^{+}} \mathbf{n}_{pp^{+}} + f_{p^{+}c}^{-} \cdot \left(2\sigma_{q}^{c}(\mathbf{X}_{p^{+}}) + \sigma_{q}^{c}(\mathbf{X}_{p}) \right) l_{pp^{+}} \mathbf{n}_{pp^{+}} \right]$$

Weighted corner normals

•
$$l_{pc}^{q} \boldsymbol{n}_{pc}^{q} = l_{pc}^{-,q} \boldsymbol{n}_{pc}^{-,q} + l_{pc}^{+,q} \boldsymbol{n}_{pc}^{+,q}$$

• $l_{pc}^{+,q} \boldsymbol{n}_{pc}^{+,q} = \frac{1}{6} \left(2\sigma_{q}^{c}(\boldsymbol{X}_{p}) + \sigma_{q}^{c}(\boldsymbol{X}_{p^{+}}) \right) l_{pp^{+}} \boldsymbol{n}_{pp^{+}}$
• $l_{pc}^{-,q} \boldsymbol{n}_{pc}^{-,q} = \frac{1}{6} \left(2\sigma_{q}^{c}(\boldsymbol{X}_{p}) + \sigma_{q}^{c}(\boldsymbol{X}_{p^{-}}) \right) l_{p^{-}p} \boldsymbol{n}_{p^{-}p}$

2nd order DG discretization

Index permutation

•
$$\int_{\partial\Omega_c} \overline{\mathbf{f}} \, \sigma_q^c \, \cdot \, \mathbf{GNdL} = \sum_{p \in \mathcal{P}(c)} \left(\mathbf{f}_{pc}^- \, \cdot \, l_{pc}^{-,q} \, \mathbf{n}_{pc}^{-,q} + \mathbf{f}_{pc}^+ \, \cdot \, l_{pc}^{+,q} \, \mathbf{n}_{pc}^{+,q} \right)$$

•
$$\int_{\partial\Omega_c} \overline{h} \, \sigma_q^c \, \mathbf{GNdL} = \sum_{p \in \mathcal{P}(c)} \left(h_{pc}^- \, l_{pc}^{-,q} \, \mathbf{n}_{pc}^{-,q} + h_{pc}^+ \, l_{pc}^{+,q} \, \mathbf{n}_{pc}^{+,q} \right)$$

Numerical fluxes on face $f_{\rho\rho^+}$

•
$$\overline{U}_{|_{\rho\rho^{+}}}^{c}(\zeta) = U_{\rho}(1-\zeta) + U_{\rho^{+}}\zeta$$
 • $\overline{P}_{|_{\rho\rho^{+}}}^{c}(\zeta) = P_{\rho c}^{+}(1-\zeta) + P_{\rho^{+} c}^{-}\zeta$
• $\overline{PU}_{|_{\rho\rho^{+}}}^{c}(\zeta) = (PU)_{\rho c}^{+}(1-\zeta) + (PU)_{\rho^{+} c}^{-}\zeta$

Fundamental assumption on face $f_{\rho\rho^+}$

•
$$\overline{P U} = \overline{P U} \implies (PU)_{pc}^- = P_{pc}^- U_p \text{ and } (PU)_{pc}^+ = P_{pc}^+ U_p$$

qth moment of the subcell forces

•
$$F_{pc}^{q} = P_{pc}^{-} I_{pc}^{-,q} n_{pc}^{-,q} + P_{pc}^{+} I_{pc}^{+,q} n_{pc}^{+,q}$$

2 2nd order DG discretization

Semi-discrete equations GCL compatible

•
$$\int_{\Omega_c} \rho^0 \frac{\mathrm{d}}{\mathrm{d}t} (\frac{1}{\rho}) \sigma_q^c \,\mathrm{d}V = -\sum_{i=1}^{ntri} \mathbf{G}_i^c \nabla_X \sigma_q^c \cdot \int_{\mathcal{T}_i^c} \mathbf{U} \mathrm{d}V + \sum_{p \in \mathcal{P}(c)} \mathbf{U}_p \cdot I_{pc}^q \mathbf{n}_{pc}^q$$

•
$$\int_{\Omega_c} \rho^0 \frac{\mathrm{d}\mathbf{U}}{\mathrm{d}t} \sigma_q^c \,\mathrm{d}V = \sum_{i=1}^{ntri} \mathbf{G}_i^c \nabla_X \sigma_q^c \int_{\mathcal{T}_i^c} P \mathrm{d}V - \sum_{p \in \mathcal{P}(c)} \mathbf{F}_{pc}^q$$

•
$$\int_{\Omega_c} \rho^0 \frac{\mathrm{d}\mathbf{E}}{\mathrm{d}t} \sigma_q^c \,\mathrm{d}V = \sum_{i=1}^{ntri} \mathbf{G}_i^c \nabla_X \sigma_q^c \cdot \int_{\mathcal{T}_i^c} P \,\mathbf{U} \mathrm{d}V - \sum_{p \in \mathcal{P}(c)} \mathbf{U}_p \cdot \mathbf{F}_{pc}^q$$

First moment equations

•
$$m_c \frac{\mathrm{d}}{\mathrm{d}t} (\frac{1}{\rho})_0^c = \sum_{p \in \mathcal{P}(c)} \boldsymbol{U}_p \cdot \boldsymbol{I}_{pc} \boldsymbol{n}_{pc}$$

• $m_c \frac{\mathrm{d} E_0^c}{\mathrm{d}t} = -\sum_{p \in \mathcal{P}(c)} \boldsymbol{U}_p \cdot \boldsymbol{F}_{pc}$

•
$$m_c \frac{\mathrm{d} \boldsymbol{U}_0^c}{\mathrm{d} t} = -\sum_{\boldsymbol{p} \in \mathcal{P}(c)} \boldsymbol{F}_{\boldsymbol{p} c}$$

We recover the EUCCLHYD scheme

Compatibility of deformation gradient tensor discretization

Theoretical compatibility

•
$$\frac{d F}{dt} = \nabla_X U$$

• $\frac{d J}{dt} = \frac{\partial}{\partial F} (\det F) : \frac{d F}{dt} = (\det F)F^{-t} : \frac{d F}{dt} = JF^{-t} : \frac{d F}{dt}$
• $\frac{d J}{dt} = JF^{-t} : \nabla_X U = JF^{-t} : (\nabla_X U) (\nabla_X x) = JF^{-t}F^t : \nabla_x = J \operatorname{tr}(\nabla_x U) = J\nabla_x \cdot U = \nabla_X \cdot (JF^{-1}U) = \nabla_X \cdot (G^t U)$
• $\frac{d J}{dt} = \frac{d}{dt} \left(\frac{\rho^0}{\rho}\right) = \rho^0 \frac{d}{dt} \left(\frac{1}{\rho}\right) = \nabla_X \cdot (G^t U)$

Second-order discretizations compatibility

•
$$\frac{\mathrm{d} J_i^c}{\mathrm{d} t} = \mathbf{G}_i^c : \frac{\mathrm{d} \mathbf{F}_i^c}{\mathrm{d} t} = \frac{1}{|\mathcal{T}_i^c|} \sum_{\rho \in \mathcal{P}(\mathcal{T}_i)} \boldsymbol{U}_{\rho} \cdot \mathbf{G}_i^c \boldsymbol{L}_{\rho i} \boldsymbol{N}_{\rho i} = \frac{1}{|\mathcal{T}_i^c|} \sum_{\rho \in \mathcal{P}(\mathcal{T}_i^c)} \boldsymbol{U}_{\rho} \cdot \boldsymbol{I}_{\rho i} \boldsymbol{n}_{\rho i}$$

•
$$\frac{\mathrm{d} J_i^c}{\mathrm{d} t} = \frac{\mathrm{d}}{\mathrm{d} t} \left(\frac{|\boldsymbol{\tau}_i^c|}{|\mathcal{T}_i^c|} \right) \quad \text{thus} \quad \left(\frac{1}{\rho} \right)_0^c = \frac{|\omega_c|}{m_c} = \frac{1}{m_c} \sum_{i=1}^{ntri} |\boldsymbol{\tau}_i^c| = \frac{1}{m_c} \sum_{i=1}^{ntri} |\mathcal{T}_i^c| J_i^c |_{\text{GOEC}}$$

3rd order DG discretization

DG discretization of the Lagrangian gas dynamics equations type

•
$$\int_{\Omega_c} \rho^0 \frac{\mathrm{d}\,\phi}{\mathrm{d}t} \sigma_q^c \,\mathrm{d}\,V = -\sum_{i=1}^{ntri} \int_{\mathcal{T}_i^c} \mathbf{G}\,\nabla_X \sigma_q^c \cdot \mathbf{f}\,\mathrm{d}\,V + \sum_{p\in\mathcal{P}(c)} \int_p^{p^+} \overline{\mathbf{f}} \cdot \sigma_q^c \,\mathbf{G}\,\mathbf{N}\mathrm{d}L$$

•
$$\int_{\Omega_c} \rho^0 \frac{\mathrm{d}\,\psi}{\mathrm{d}t} \sigma_q^c \,\mathrm{d}\,V = -\sum_{i=1}^{ntri} \int_{\mathcal{T}_i^c} \mathbf{G}\,\nabla_X \sigma_q^c \,h\,\mathrm{d}\,V + \sum_{p\in\mathcal{P}(c)} \int_p^{p^+} \overline{h}\,\sigma_q^c \,\mathbf{G}\,\mathbf{N}\mathrm{d}L$$

Quadratic assumptions on face $f_{\rho\rho^+}$

•
$$f_{|_{pp^+}}(\zeta) = (1-\zeta)(1-2\zeta) f_{pc}^+ + 4\zeta(1-\zeta) f_{mc} + \zeta(2\zeta-1) f_{p^+c}^-$$

•
$$h_{|_{pp^+}}(\zeta) = (1-\zeta)(1-2\zeta) h_{pc}^+ + 4\zeta(1-\zeta) h_{mc} + \zeta(2\zeta-1) h_{p+c}^-$$

Linear and quadratic properties on face f_{pp^+}

• G
$$\mathbf{N} \, \mathrm{d}L_{|_{pp^+}}(\zeta) = \mathbf{n} \, \mathrm{d}I_{|_{pp^+}}(\zeta) = 2 \left((1-\zeta) \, I_{pQ} \mathbf{n}_{pQ} + \zeta \, I_{Qp^+} \mathbf{n}_{Qp^+} \right) \mathrm{d}\zeta$$

•
$$\sigma_{q|_{pp^+}}^c(\zeta) = (1-\zeta)(1-2\zeta)\sigma_q^c(\boldsymbol{X}_p) + 4\zeta(1-\zeta)\sigma_q^c(\boldsymbol{X}_m) + \zeta(2\zeta-1)\sigma_q^c(\boldsymbol{X}_{p^+})$$

2 3rd order DG discretization

Analytical integration + Index permutation

•
$$\int_{\partial\Omega_c} \overline{f} \sigma_q^c \cdot \mathbf{GN} dL = \sum_{p \in \mathcal{P}(c)} \frac{1}{3} \left(f_{pc}^- \cdot I_{pc}^{-,q} \mathbf{n}_{pc}^{-,q} + f_{pc}^+ \cdot I_{pc}^{+,q} \mathbf{n}_{pc}^{+,q} \right) + \sum_{m \in \mathcal{M}(c)} \frac{2}{3} f_{mc} \cdot I_{mc}^q \mathbf{n}_{mc}^q$$

•
$$\int_{\partial\Omega_c} \overline{h} \sigma_q^c \cdot \mathbf{GN} dL = \sum_{p \in \mathcal{P}(c)} \frac{1}{3} \left(h_{pc}^- I_{pc}^{-,q} \mathbf{n}_{pc}^{-,q} + h_{pc}^+ I_{pc}^{+,q} \mathbf{n}_{pc}^{+,q} \right) + \sum_{m \in \mathcal{M}(c)} \frac{2}{3} h_{mc} \cdot I_{mc}^q \mathbf{n}_{mc}^q$$

Weighted midpoint and corner normals

$$l_{mc}^{q} \mathbf{n}_{mc}^{q} = l_{mc}^{-,q} \mathbf{n}_{mc}^{-,q} + l_{mc}^{+,q} \mathbf{n}_{mc}^{+,q} \text{ and } l_{pc}^{q} \mathbf{n}_{pc}^{q} = l_{pc}^{-,q} \mathbf{n}_{pc}^{-,q} + l_{pc}^{+,q} \mathbf{n}_{pc}^{+,q}$$

$$l_{mc}^{-,q} \mathbf{n}_{mc}^{-} = \frac{1}{5} \left(4 \sigma_{q}^{c}(\mathbf{X}_{m}) + \sigma_{q}^{c}(\mathbf{X}_{p}) \right) l_{pQ} \mathbf{n}_{pQ}$$

$$l_{mc}^{+,q} \mathbf{n}_{mc}^{+} = \frac{1}{5} \left(4 \sigma_{q}^{c}(\mathbf{X}_{m}) + \sigma_{q}^{c}(\mathbf{X}_{p^{+}}) \right) l_{Qp^{+}} \mathbf{n}_{Qp^{+}}$$

$$l_{pc}^{-,q} \mathbf{n}_{pc}^{-,q} = \frac{1}{10} \left[(6 \sigma_{q}^{c}(\mathbf{X}_{p}) + 4 \sigma_{q}^{c}(\mathbf{X}_{m^{-}})) l_{Q^{-p}} \mathbf{n}_{Q^{-p}} + (\sigma_{q}^{c}(\mathbf{X}_{p}) - \sigma_{q}^{c}(\mathbf{X}_{p^{-}})) l_{p^{-p}} \mathbf{n}_{p^{-p}} \right]$$

$$l_{pc}^{+,q} \mathbf{n}_{pc}^{+,q} = \frac{1}{10} \left[(6 \sigma_{q}^{c}(\mathbf{X}_{p}) + 4 \sigma_{q}^{c}(\mathbf{X}_{m})) l_{pQ} \mathbf{n}_{pQ} + (\sigma_{q}^{c}(\mathbf{X}_{p}) - \sigma_{q}^{c}(\mathbf{X}_{p^{+}})) l_{pp^{+}} \mathbf{n}_{pp^{+}} \right]_{coto}$$

22 3rd order DG discretization

Semi-discrete equations GCL compatible

$$\int_{\Omega_{c}}^{\rho} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{\rho}\right) \sigma_{q}^{c} \,\mathrm{d}V = -\sum_{i=1}^{ntri} \int_{\mathcal{T}_{i}^{c}}^{\mathcal{U}} \cdot \mathbf{G} \nabla_{X} \sigma_{q}^{c} \mathrm{d}V + \sum_{p \in \mathcal{P}(c)} \frac{1}{3} \boldsymbol{U}_{p} \cdot l_{pc}^{q} \boldsymbol{n}_{pc}^{q} + \sum_{m \in \mathcal{M}(c)} \frac{2}{3} \boldsymbol{U}_{m} \cdot l_{mc}^{q} \boldsymbol{n}_{mc}^{q}$$

$$\int_{\Omega_{c}}^{\rho} \frac{\mathrm{d} \boldsymbol{U}}{\mathrm{d}t} \sigma_{q}^{c} \,\mathrm{d}V = \sum_{i=1}^{ntri} \int_{\mathcal{T}_{i}^{c}}^{\mathcal{P}} P \mathbf{G} \nabla_{X} \sigma_{q}^{c} \mathrm{d}V - \sum_{p \in \mathcal{P}(c)} \frac{1}{3} \boldsymbol{F}_{pc}^{q} - \sum_{m \in \mathcal{M}(c)} \frac{2}{3} \boldsymbol{F}_{mc}^{q}$$

$$\int_{\Omega_{c}}^{\rho} \frac{\mathrm{d} \boldsymbol{E}}{\mathrm{d}t} \sigma_{q}^{c} \,\mathrm{d}V = -\sum_{i=1}^{ntri} \int_{\mathcal{T}_{i}^{c}}^{\mathcal{P}} \boldsymbol{U} \cdot \mathbf{G} \nabla_{X} \sigma_{q}^{c} \mathrm{d}V + \sum_{p \in \mathcal{P}(c)} \frac{1}{3} \boldsymbol{U}_{p} \cdot \boldsymbol{F}_{pc}^{q} + \sum_{m \in \mathcal{M}(c)} \frac{2}{3} \boldsymbol{U}_{m} \cdot \boldsymbol{F}_{mc}^{q}$$
Equation on the first moment of the specific volume
$$\bullet \int_{\partial\Omega_{c}} \overline{\boldsymbol{U}} \cdot \mathbf{GN} \mathrm{d}L = \sum_{p \in \mathcal{P}(c)} \frac{1}{3} \boldsymbol{U}_{p} \cdot l_{Q-Q} \boldsymbol{n}_{Q-Q} + \sum_{m \in \mathcal{M}(c)} \frac{2}{3} \boldsymbol{U}_{m} \cdot l_{pp^{+}} \boldsymbol{n}_{pp^{+}}$$

B. BOUTIN, E. DERIAZ, P. HOCH, P. NAVARO, Extension of ALE methodology to unstructured conical meshes, ESAIM: Proceedings, 2010.

Rate of convergence computed on the pressure in the case of the Taylor-Green vortex

D.O.F	N	$E_{L_1}^h$	$E^h_{L_2}$	$E^h_{L_{\infty}}$	time (sec)
600	24 imes 25	2.67É-2	3.31Ē-2	8.55Ē-2	2.01
2400	48 × 50	1.36E-2	1.69E-2	4.37E-2	11.0

TABLE: First-order DG scheme at time t = 0.1.

D.O.F	N	$E_{L_1}^h$	$E_{L_2}^h$	$E_{L_{\infty}}^{h}$	time (sec)
630	14×15	2.76É-3	3.33Ē-3	1.07E-2	2.77
2436	28 imes 29	7.52E-4	9.02E-4	2.73E-3	11.3

TABLE: Second-order DG scheme without limitation at time t = 0.1.

D.O.F	N	$E_{L_1}^h$	$E^h_{L_2}$	$E^h_{L_\infty}$	time (sec)
600	10 × 10	2.67E-4	3.36E-4	1.21E-3	4.00
2400	20 × 20	3.43E-5	4.36E-5	1.66E-4	30.6

TABLE: Third-order DG scheme without limitation at time t = 0.1.

Numerical results

Sedov point blast problem on a Cartesian grid

FIGURE: Point blast Sedov problem on a Cartesian grid made of 30 \times 30 cells: density.