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Introduction Eulerian and Lagrangian descriptions

Eulerian formalism (spatial description)
Fixed referential attached to the observer
Fixed observation area in which the fluid flows through

Lagrangian formalism (material description)
Moving referential attached to the material
Observation area getting moved and deformed through the fluid flow

Advantages of the Lagrangian formalism
Adapted to the study of regions undergoing large shape changes
Naturally tracks interfaces in multimaterial compressible flows
No numerical diffusion from the discretization of the convection terms

Disadvantages of the Lagrangian formalism
Robustness issue in cases of shear flows or vortexes

=⇒ ALE (Arbitrary Lagrangian-Eulerian) method
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Eulerian and Lagrangian descriptions Eulerian description

Definitions
ρ is the fluid density
u = (u1,u2,u3)t is the fluid velocity
e is the fluid specific total energy
p is the fluid pressure
ε = e − 1

2 u2 is the fluid specific internal energy

Euler equations
∂ ρ

∂t
+∇x � (ρu) = 0 Continuity equation

∂ ρu
∂t

+∇x � (ρu ⊗ u + p Id ) = 0 Momentum conservation equation

∂ ρ e
∂t

+∇x � (ρu e + p u) = 0 Total energy conservation equation

Thermodynamical closure
p = p(ρ, ε) Equation of state (EOS)
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Eulerian and Lagrangian descriptions Lagrangian descriptions

Momentum equation
∂ ρu
∂t

+∇x � (ρu ⊗ u + p Id ) = 0

ρ
(∂ u
∂t

+ (∇xu)u
)

+ u
( ∂ ρ
∂t

+∇x � (ρu)︸ ︷︷ ︸
=0

)
+∇xp = 0

ρ
(∂ ui

∂t
+ u �∇xui

)
+∇x � (p 1(i)) = 0

1(i) = (δi1, δi2, δi3)t

Total energy equation
∂ ρ e
∂t

+∇x � (ρu e + p u) = 0

ρ
(∂ e
∂t

+ u �∇xe
)

+ e
( ∂ ρ
∂t

+∇x � (ρu)︸ ︷︷ ︸
=0

)
+∇x � (p u) = 0

ρ
(∂ e
∂t

+ u �∇xe
)

+∇x � (p u) = 0
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Eulerian and Lagrangian descriptions Lagrangian descriptions

Definitions
τ = 1

ρ is the specific volume

U = (τ,u1,u2,u3,e)t is the variables vector
F(U) = (−u,p 1(1),p 1(2),p 1(3),p u)t is the flux vector

Continuity equation
∂ ρ

∂t
+∇x � (ρu) = 0

∂ ρ

∂t
+ u �∇xρ+ ρ∇x � u = 0

ρ
(∂ τ
∂t

+ u �∇xτ
)
−∇x � u = 0

Gas dynamics equations

ρ
(∂ U
∂t

+ u �∇xU
)

+∇x � F(U) = 0
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Eulerian and Lagrangian descriptions Lagrangian descriptions

Flow transformation of the fluid
The fluid flow is described mathematically by the continuous
transformation, Φ, so-called mapping such as Φ : X −→ x = Φ(X , t)

����

��

∂Ω

X

N

n

∂ω

x = Φ(X, t)

Ω ω

Φ

Figure : Notation for the flow map.

where X is the Lagrangian (initial) coordinate, x the Eulerian (actual)
coordinate, N the Lagrangian normal and n the Eulerian normal

Flow map Jacobian matrix: deformation gradient tensor
J = ∇xΦ = ∇xx and |J| = det J > 0
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Eulerian and Lagrangian descriptions Lagrangian descriptions

Trajectory equation
∂ x(X , t)

∂t
= u(x(X , t), t)

x(X ,0) = X

Material time derivative
ϕ(x , t) is a fluid variable with sufficient smoothness

dϕ
dt
≡ ∂ ϕ(x(X , t), t)

∂t
=
∂ ϕ

∂t
+ u �∇xϕ

Updated Lagrangian formulation

ρ
d U
dt

+∇x � F(U) = 0 Moving configuration

Integral conservative form
∂

∂t

∫
ω

ρU dv +

∫
∂ω

F(U) � n ds = 0 Moving configuration
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Eulerian and Lagrangian descriptions Lagrangian descriptions

Transformation formulas
J dX = dx Change of shape of infinitesimal vectors
|J| dV = dv Measure of the volume change
|J|J−tN dS ≡ J?N dS = n ds Nanson formula

Mass conservation
ρ0(X ) is the initial fluid density∫

Ω
ρ0 dV =

∫
ω
ρ dv∫

ω
ρ dv =

∫
Ω
ρ |J| dV

ρ |J| = ρ0

Mass integral relation
∂

∂t

∫
ω

ρϕ dv =
∂

∂t

∫
Ω

ρ |J|ϕ dV =

∫
Ω

ρ |J| ∂ ϕ
∂t

dV

∂

∂t

∫
ω

ρϕ dv =

∫
ω

ρ
dϕ
dt

dv
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Eulerian and Lagrangian descriptions Lagrangian descriptions

Differential operators transformations
φ(x , t) is a fluid vector valued variable with sufficient smoothness

∇x � φ = 1
|J|∇X � (J?

t
φ)

Piola compatibility condition

∇X � J? = 0 =⇒
∫

Ω
∇X � J? dV =

∫
∂Ω

J? N dS =
∫
∂ω

n ds = 0

Total Lagrangian formulation
∂ J
∂t
−∇X u = 0 Deformation gradient tensor

ρ0 ∂ U
∂t

+∇X � (J?
t
F(U)) = 0 Fixed configuration

Integral conservative form
∂

∂t

∫
Ω

ρ0 U dV +

∫
∂Ω

F(U) � J? N dS = 0 Fixed configuration
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Two-dimensional discretization DG general framework

(s + 1) th order DG discretization

{Ωc}c a partition of the domain Ω into polygonal cells

{σc
k}k=0...K basis of P s(Ωc), where K + 1 = (s+1)(s+2)

2

φc
h(X , t) =

K∑
k=0

φc
k (t)σc

k (X ) approximate function of φ(X , t) on Ωc

Definitions
mc constant mass of cell Ωc

X c = (Xc ,Yc)t =
1

mc

∫
Ωc

ρ0(X ) X dV center of mass of cell Ωc

〈φ〉c =
1

mc

∫
Ωc

ρ0(X )φ(X ) dV mean value of function φ over Ωc

(φ � ψ)c =

∫
Ωc

ρ0(X )φ(X )ψ(X ) dV associated scalar product
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Two-dimensional discretization DG general framework

Taylor expansion on the cell, located at the center of mass

φ(X ) = φ(X c) +
s∑

k=1

k∑
j=0

(X −Xc)k−j (Y − Yc)j

j!(k − j)!

∂k φ

∂X k−j∂Y j (X c) + o(‖X −X c‖s)

(s + 1) th order scheme polynomial Taylor basis
The first-order polynomial component and the associated basis function

φc
0 = 〈φ〉c and σc

0 = 1

The k th-order polynomial components and the associated basis functions

φc
k(k+1)

2 +j
= (∆Xc)k−j (∆Yc)j ∂k φ

∂X k−j∂Y j (X c),

σc
k(k+1)

2 +j
= 1

j!(k−j)!

[(
X−Xc
∆Xc

)k−j(
Y−Yc
∆Yc

)j
−
〈(

X−Xc
∆Xc

)k−j(
Y−Yc
∆Yc

)j
〉

c

]
,

where 0 < k ≤ s, j = 0 . . . k , ∆Xc = Xmax−Xmin
2 and ∆Yc = Ymax−Ymin

2

H. LUO, J. D. BAUM AND R. LÖHNER, A DG method based on a Taylor
basis for the compressible flows on arbitrary grids. J. Comp. Phys., 2008.
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Two-dimensional discretization DG general framework

Outcome
First moment associated to the basis function σc

0 = 1 is the mass
averaged value

φc
0 = 〈φ〉c

The successive moments can be identified as the successive derivatives
of the function expressed at the center of mass of the cell

φc
k(k+1)

2 +j
= (∆Xc)k−j (∆Yc)j ∂k φ

∂X k−j∂Y j (X c)

The first basis function is orthogonal to the other ones

(σc
0 � σc

k )c = mc δ0k

Same basis functions regardless the shape of the cells (squares,
triangles, generic polygonal cells)
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Two-dimensional discretization DG general framework

Total Lagrangian gas dynamics system

ρ0 ∂ U
∂t

+∇X � (J?
t
F(U)) = 0

Local variational formulations∫
Ωc

ρ0 ∂ Uc
h

∂t
σc

j dV =
K∑

k=0

∂ Uc
k

∂t

∫
Ωc

ρ0σc
j σ

c
k dV

=

∫
Ωc

F(Uc
h) � J?∇xσ

c
j dV −

∫
∂Ωc

F(U) � σc
j J?NdS

F(U) = (−u, 1(1) p, 1(2) p, p u)t is the numerical flux

Geometric Conservation Law (GCL)
∂ |ωc |
∂t

≡ ∂

∂t

∫
ωc

dv =
∂

∂t

∫
Ωc

|J| dV =

∫
Ωc

ρ0 ∂ τ
c
h

∂t
dV∫

Ωc

ρ0 ∂ τ
c
h

∂t
dV =

∫
∂Ωc

u � J?NdS
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Two-dimensional discretization DG general framework

Mass matrix properties∫
Ωc

ρ0σc
j σ

c
k dV =

(
σc

j � σc
k
)

c
generic coefficient of the symmetric positive

definite mass matrix(
σc

0 � σc
k

)
c = mc δ0k mass averaged equation is independent of the other

polynomial basis components equations

Interior terms∫
Ωc

F(Uc
h) � J?∇xσ

c
j dV is evaluated through the use of a

two-dimensional high-order quadrature rule

Boundary terms∫
∂Ωc

F(U) � σc
j J? N dS required a specific treatment to ensure the GCL

It remains to determine the numerical fluxes
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Two-dimensional discretization Deformation gradient tensor

Requirements
Consistency of vector J?NdS = nds at the interfaces of the cells
Continuity of vector J?N at cell interfaces on both sides of the interface
Preservation of uniform flows, J? = |J|J−t the cofactor matrix∫

Ωc

J?∇xσ
c
j dV =

∫
∂Ωc

σc
j J?NdS ⇐⇒

∫
Ωc

σc
j (∇X � J?) dV = 0

Generalization of the weak form of the Piola compatibility condition

Tensor J discretization
Discretization of tensor J by means of a mapping
defined on triangular cells
Partition of the polygonal cells in the initial
configuration into non-overlapping triangles

Ωc =
ntri⋃
i=1

T c
i

Ωc

T c
i
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Two-dimensional discretization Deformation gradient tensor

(s + 1) th order continuous mapping function
We develop Φ on the Finite Elements basis functions Λi

q in Ti of degree s

Φi
h(X , t) =

∑
q∈Q(i)

Λi
q(X ) Φq(t),

where Q(i) is the Ti control points set, including the vertices {p−,p,p+}
Φq(t) = Φ(X q , t) = xq

∂Φq

∂t
= uq =⇒ ∂

∂t
Ji (X , t) =

∑
q∈Q(i)

uq(t)⊗∇x Λi
q(X )

Outcome
Satisfaction of the Piola compatibility condition everywhere
Consistency and continuity of the Eulerian normal J?N
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Two-dimensional discretization Discretization

Example of the fluid flow mapping in the fourth order case

p−

p+p+

p−
p p

Φ

Ti

τi

Figure : Nodes arrangement for a cubic Lagrange Finite Element mapping.

Curved edges definition using s + 1 control points
Projection of the continuous mapping function Φ on the face fpp+

x |pp+ (ζ) = xpλp(ζ) +
∑

q∈Q(pp+)\{p,p+}

xqλq(ζ) + xp+λp+ (ζ),

where Q(pp+) is the face control points set, ζ ∈ [0,1] the curvilinear
abscissa and λq the 1D Finite Element basis functions of degree s
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Two-dimensional discretization Discretization

Local variational formulations∫
Ωc

ρ0 ∂ Uc
h

∂t
σc

j dV =
ntri∑
i=1

∫
T c

i

F(Uc
h) � J?∇xσ

c
j dV

−
∑

p∈P(c)

∫ p+

p
F(U) � σc

j J?NdL

p+

p−

p

Npp+

Np−p

F
−
pc

Fqc

Ωc

F
−
p+c

F
+
pc

Polynomial assumptions on face fpp+

F(U)|pp+
(ζ) = F

+

pc λp(ζ) +
∑

q\{p,p+}

Fqc λq(ζ) + F
−
p+c λp+ (ζ)

Polynomial properties on face fpp+

J? N dL|pp+ (ζ) = n dl|pp+ =
∂x
∂ζ

dζ|pp+ × ez =
∑

q

∂λq

∂ζ
(ζ) (xq × ez)

σc
j|pp+

(ζ) = σc
j (X p)λp(ζ) +

∑
q\{p,p+}

σc
j (X q)λq(ζ) + σc

j (X p+ )λp+ (ζ)
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Two-dimensional discretization Discretization

Fundamental assumptions
u±pc = up, ∀c ∈ C(p) and uqL = uqR = uq

Procedure
Analytical integration + index permutation

Weighted corner normals

l+,j
pc n+,j

pc =

∫ p+

p
λp σj J? N dS

l−,jpc n−,jpc =

∫ p

p−
λp σj J? N dS

l jpcnj
pc = l−,jpc n−,jpc + l+,j

pc n+,j
pc

Weighted face control point normals

l jqcnj
qc =

∫ p+

p
λq σj J? N dS
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Two-dimensional discretization Discretization

Semi-discrete equations GCL compatible∫
Ωc

ρ0 ∂ Uc
h

∂t
σc

j dV = −
ntri∑
i=1

∫
T c

i

F(Uc
h) � J?∇xσ

c
j dV

+
∑

p∈P(c)

[(
F
−
pc � l
−,j
pc n−,jpc +F

+

pc � l
+,j
pc n+,j

pc

)
+
∑

q\{p,p+}

Fqc � l
j
qcnj

qc

]

Entropic semi-discrete production
T dS ≡ dε+ p dτ = de − u � du + p dτ Gibbs identity
Combining the different variational formulations leads to∫

Ωc

ρ0 T
∂ S
∂t

dV =

∫
∂Ωc

(p − pc
h)(uc

h − u) � J?NdS

A sufficient condition to satisfy
∫

Ωc
ρ0T ∂ S

∂t dV ≥ 0 is

p − pc
h = −z̃ (u − uc

h) �
J?N
‖J?N‖ = −z̃ (u − uc

h) � n

z̃ ≥ 0 is a local approximation of the acoustic impedance z = ρa
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Two-dimensional discretization Control point solvers

p

Ωc3

Ωc4

Ωc2

Ωc5

Ωc1

p

ΩL

ΩR
p+

Node 
ell set Fa
e point 
ell set

q

Conservation + no boundary condition∑
c

∫
Ωc

ρ0 ∂ Uc
h

∂t
dV = 0

Sufficient conditions∑
c∈C(p)

(
p−pc l−,0pc n−,0pc + p+

pc l+,0
pc n+,0

pc

)
= 0 Node condition

pqL l0qLn0
qL + pqR l0qRn0

qR = 0 Face condition
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Two-dimensional discretization Control point solvers

Nodal velocity∑
c∈C(p)

[
pc

h(X p) l0pcn0
pc −Mpc

(
up − uc

h(X p)
)]

= 0

Mpc = z̃−pc l−,0pc (n−,0pc ⊗ n−,0pc ) + z̃+
pc l+,0

pc (n+,0
pc ⊗ n+,0

pc )( ∑
c∈C(p)

Mpc

)
up =

∑
c∈C(p)

[
Mpc uc

h(X p) + pc
h(X p) l0pcn0

pc
]

Face control point velocity(
pL

h(X p)− pR
h (X q)

)
l0qLn0

qL −MqL
(
uq − uL

h(X q)
)
−MqR

(
uq − uR

h (X q)
)

= 0

Mqc = z̃qc Mq = z̃qc
(
l0qLn0

qL ⊗ n0
qL

)
Mq uq = Mq

(
z̃qL uL

h(X q) + z̃qR uR
h (X q)

z̃qL + z̃qR

)
− pR

h (X q)− pL
h(X q)

z̃qL + z̃qR
l0qLn0

qL

(uq � n0
qL) =

(
z̃qL uL

h(X q) + z̃qR uR
h (X q)

z̃qL + z̃qR

)
� n0

qL −
pR

h (X q)− pL
h(X q)

z̃qL + z̃qR
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Two-dimensional discretization Control point solvers

Tangential component of the face control point velocity

(uq � t0
qL) =

(
z̃qL uL

h(X q) + z̃qR uR
h (X q)

z̃qL + z̃qR

)
� t0

qL

Face control point velocity

uq =

(
z̃qL uL

h(X q) + z̃qR uR
h (X q)

z̃qL + z̃qR

)
− pR

h (X q)− pL
h(X q)

z̃qL + z̃qR
n0

qL

Deformation tensor
∂

∂t
Ji =

∑
Q∈Q(i)

uQ ⊗∇x Λi
Q

Interior points velocity
uQ = uc

h(X Q , t)
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Two-dimensional discretization Initial deformation

Composed derivatives

JT (X r , t) = ∇XrΦT (X r , t)
= ∇XΦH(X , t) ◦ ∇XrΦ0(X r )

= JH(X , t) J0(X r )

|JT (X r , t)| = |JH(X , t)| |J0(X r )|

Mass conservation
ρ0 |J0| = ρ |JT |

ΦH(X, t)

ΦT (Xr, t)

Ωc

ωc

Ωr
c

Xr

X

x

Φ0(Xr)

Modification of the mass matrix∫
ωc

ρ
∂ ψc

h
∂t

σj dω =
K∑

k=0

∂ ψk

∂t

∫
Ωr

c

ρ0 |J0|σj σk dΩr time rate of change of

successive moments of function ψ
New definitions of mass matrix, of mass averaged value and of the
associated scalar product
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Numerical results Second-order scheme

Sedov point blast problem on a Cartesian grid
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(a) Second-order scheme.
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2nd order

(b) Density profiles.

Figure : Point blast Sedov problem on a Cartesian grid made of 30× 30 cells: density.

François Vilar (Brown) High-order Cell-Centered DG scheme May 4th, 2015 25 / 48



Numerical results Second-order scheme

Sedov point blast problem on unstructured grids
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(a) Polygonal grid.
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(b) Triangular grid.

Figure : Unstructured initial grids for the point blast Sedov problem.
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Numerical results Second-order scheme

Sedov point blast problem a polygonal grid
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(a) Second-order scheme.

 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

solution
2nd order

(b) Density profiles.

Figure : Point blast Sedov problem on an unstructured grid made of 775 polygonal
cells: density map.
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Numerical results Second-order scheme

Sedov point blast problem on a triangular grid
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(a) Second-order scheme.
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(b) Density profiles.

Figure : Point blast Sedov problem on an unstructured grid made of 1100 triangular
cells: density map.
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Numerical results Second-order scheme

Noh problem
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(a) Second-order scheme.
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(b) Density profiles.

Figure : Noh problem on a Cartesian grid made of 50× 50 cells: density.
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Numerical results Second-order scheme

Taylor-Green vortex problem

(a) Second-order scheme. (b) Exact solution.

Figure : Motion of a 10× 10 Cartesian mesh through a T.-G. vortex, at t = 0.75.

François Vilar (Brown) High-order Cell-Centered DG scheme May 4th, 2015 30 / 48



Numerical results Second-order scheme

Taylor-Green vortex problem

L1 L2 L∞
h Eh

L1
qh

L1
Eh

L2
qh

L2
Eh

L∞ qh
L∞

1
10 5.06E-3 1.94 6.16E-3 1.93 2.20E-2 1.84
1

20 1.32E-3 1.98 1.62E-3 1.97 5.91E-3 1.95
1

40 3.33E-4 1.99 4.12E-4 1.99 1.53E-3 1.98
1

80 8.35E-5 2.00 1.04E-4 2.00 3.86E-4 1.99
1

160 2.09E-5 - 2.60E-5 - 9.69E-5 -

Table : Rate of convergence computed on the pressure at time t = 0.1.
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Numerical results Third-order scheme

Polar grids
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(a) Non-uniform grid.
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(b) One angular cell grid.

Figure : Polar initial grids for the Sod shock tube problem.
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Numerical results Third-order scheme

Symmetry preservation
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(a) First-order scheme.
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(b) Second-order scheme.

Figure : Sod shock tube problem on a polar grid made of 100× 3 non-uniform cells.
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Numerical results Third-order scheme

Symmetry preservation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Density map.
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Figure : Third-order DG solution for a Sod shock tube problem on a polar grid made of
100× 3 non-uniform cells.
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Numerical results Third-order scheme

One angular cell polar Sod shock tube problem
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(a) Density map.
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Figure : Third-order DG solution for a Sod shock tube problem on a polar grid made of
100× 1 cells.
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Numerical results Third-order scheme

Variant of the incompressible Gresho vortex problem

(a) First-order scheme. (b) Second-order scheme.

Figure : Motion of a polar grid defined in polar coordinates by (r , θ) ∈ [0, 1]× [0, 2π],
with 40× 18 cells at t = 1: zoom on the zone (r , θ) ∈ [0, 0.5]× [0, 2π].
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Numerical results Third-order scheme

Variant of the incompressible Gresho vortex problem

(a) Third-order scheme. (b) Exact solution.

Figure : Motion of a polar grid defined in polar coordinates by (r , θ) ∈ [0, 1]× [0, 2π],
with 40× 18 cells at t = 1: zoom on the zone (r , θ) ∈ [0, 0.5]× [0, 2π].
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Numerical results Third-order scheme

Variant of the Gresho vortex problem
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(b) Velocity profiles.

Figure : Gresho variant problem on a polar grid defined in polar coordinates by
(r , θ) ∈ [0, 1]× [0, 2π], with 40× 18 cells at t = 1.
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Numerical results Third-order scheme

Variant of the Gresho vortex problem
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Figure : Gresho variant problem on a polar grid defined in polar coordinates by
(r , θ) ∈ [0, 1]× [0, 2π], with 40× 18 cells at t = 1.
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Numerical results Third-order scheme

Kidder isentropic compression
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(a) First-order solution.
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(b) Second-order solution

Figure : First-order and second-order DG solutions for a Kidder isentropic
compression problem on a polar grid made of 10× 5 cells.
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Numerical results Third-order scheme

Kidder isentropic compression
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Figure : First-order and second-order DG solutions for a Kidder isentropic
compression problem on a polar grid made of 10× 5 cells: shell radii evolution.
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Numerical results Third-order scheme

Kidder isentropic compression
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(a) Meshes at time t = 0 and t = tf .
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Figure : Third-order DG solution for a Kidder isentropic compression problem on a
polar grid made of 10× 3 cells.
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Numerical results Third-order scheme

Taylor-Green vortex problem

(a) Third-order scheme. (b) Exact solution.

Figure : Motion of a 10× 10 Cartesian mesh through a T.-G. vortex, at t = 0.75.
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Numerical results Third-order scheme

Taylor-Green vortex problem

L1 L2 L∞
h Eh

L1
qh

L1
Eh

L2
qh

L2
Eh

L∞ qh
L∞

1
10 2.67E-4 2.96 3.36E-4 2.94 1.21E-3 2.86
1

20 3.43E-5 2.97 4.36E-5 2.96 1.66E-4 2.93
1

40 4.37E-6 2.99 5.59E-6 2.98 2.18E-5 2.96
1

80 5.50E-7 2.99 7.06E-7 2.99 2.80E-6 2.99
1

160 6.91E-8 - 8.87E-8 - 3.53E-7 -

Table : Rate of convergence computed on the pressure at time t = 0.1.
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Numerical results Third-order scheme

Taylor-Green vortex problem

D.O.F N Eh
L1

Eh
L2

Eh
L∞ time (sec)

600 24× 25 2.67E-2 3.31E-2 8.55E-2 2.01
2400 48× 50 1.36E-2 1.69E-2 4.37E-2 11.0

Table : First-order DG scheme at time t = 0.1.

D.O.F N Eh
L1

Eh
L2

Eh
L∞ time (sec)

630 14× 15 2.76E-3 3.33E-3 1.07E-2 2.77
2436 28× 29 7.52E-4 9.02E-4 2.73E-3 11.3

Table : Second-order DG scheme without limitation at time t = 0.1.

D.O.F N Eh
L1

Eh
L2

Eh
L∞ time (sec)

600 10× 10 2.67E-4 3.36E-4 1.21E-3 4.00
2400 20× 20 3.43E-5 4.36E-5 1.66E-4 30.6

Table : Third-order DG scheme without limitation at time t = 0.1.
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Numerical results Third-order scheme

Sedov point blast problem on a Cartesian grid
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(a) Third-order scheme.
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Figure : Point blast Sedov problem on a Cartesian grid made of 30× 30 cells: density.

François Vilar (Brown) High-order Cell-Centered DG scheme May 4th, 2015 46 / 48



Conclusion

1 Introduction

2 Eulerian and Lagrangian descriptions

3 Two-dimensional discretization

4 Numerical results

5 Conclusion

François Vilar (Brown) High-order Cell-Centered DG scheme May 4th, 2015 46 / 48



Conclusion

Conclusions
Development of generic high-order DG schemes for the 2D gas dynamics
system in a total Lagrangian formalism
GCL and Piola compatibility condition ensured by construction
Dramatic improvement of symmetry preservation and angular
momentum conservation by means of third-order DG scheme
Analytical proof of the positivity-preserving property of these schemes,
form the first-order to the high-orders by means of a special limitation

Perspectives
High-order limitation on moving high-order geometries
Extension to ALE
Extension to magnetohydrodynamics (FCM)
Code parallelization
Extension to 3D
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