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Introduction Eulerian and Lagrangian descriptions

Eulerian formalism (spatial description)
o Fixed referential attached to the observer
@ Fixed observation area in which the fluid flows through

Lagrangian formalism (material description)

@ Moving referential attached to the material
@ Observation area getting moved and deformed through the fluid flow

Advantages of the Lagrangian formalism
@ Adapted to the study of regions undergoing large shape changes
@ Naturally tracks interfaces in multimaterial compressible flows
@ No numerical diffusion from the discretization of the convection terms

Disadvantages of the Lagrangian formalism
@ Robustness issue in cases of shear flows or vortexes

— ALE (Arbitrary Lagrangian-Eulerian) method
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Eulerian and Lagrangian descriptions

e Eulerian and Lagrangian descriptions
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@ p is the fluid density

@ U= (U, U, u3)t is the fluid velocity

@ e s the fluid specific total energy

@ p s the fluid pressure

@ c=e— Ju? isthe fluid specific internal energy

Euler equations

° % +Vx-(pu) =0 Continuity equation
° 6aptu +Vx.(pu@Uu+plg)=0 Momentum conservation equation
° a@pte +Vx.(pue+pu)=0 Total energy conservation equation

Thermodynamical closure
@ p=p(p,e) Equation of state (EOS)
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Eulerian and Lagrangian descriptions Lagrangian descriptions

Momentum equation
opu

° W+VX-(pU®U+p|d):0

ou ap .
Op(E—I—(VXU)U>—|—U<E+VX.(pU)>+VX,D—O

—_———
5 =0
U .

° p( 8t'+u.VXu,->+VX.(p]l(l)):0
@ 1(i) = (01,612, 0i3)"

Total energy equation

ope
° %JFVX.(pueeru):O

° p(%Jru.Vxe)Jre(%Jrvx.(pu))+VX.(pu):O
=0
° p(%+u.vxe>+vx.(pu):0
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Definitions

o 7 =1 s the specific volume

P
@ U= (7,uy, U, u3,€)" isthe variables vector

@ F(U)=(—u,p1(1),p1(2),p1(3),pu) is the flux vector

Continuity equation

ap .
= E—’—VX'(pu)_O

9
° aff+u.vxp+pvx.u=o

o;;(%—i—u.v,ﬂ')—vx.u:o

Gas dynamics equations

° p(%+u.vxu)+vx.F(U)=o
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Eulerian and Lagrangian descriptions Lagrangian descriptions

Flow transformation of the fluid

@ The fluid flow is described mathematically by the continuous
transformation, ®, so-called mapping such as ® : X — x = ®(X, )

NG

Figure : Notation for the flow map.

where X is the Lagrangian (initial) coordinate, x the Eulerian (actual)
coordinate, N the Lagrangian normal and n the Eulerian normal

Flow map Jacobian matrix: deformation gradient tensor
0J=V,®=V,x and |J|=detd>0
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Eulerian and Lagrangian descriptions Lagrangian descriptions

Trajectory equation

- w — u(x(X, 1), 1)

@ x(X,0)=X

Material time derivative

@ o(x,t) isafluid variable with sufficient smoothness

o 4y _ du(x(X,1),t) 9y

a - ot ar UV
Updated Lagrangian formulation
@ p % +Vx.F(U)=0 Moving configuration
Integral conservative form
° %/ pUdv + F(U).nds=0 Moving configuration
w Ow
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Transformation formulas

@ JdX =dx Change of shape of infinitesimal vectors
@ [J|dV =dv Measure of the volume change
@ [J|UINdS=J*NdS = nds Nanson formula

Mass conservation

@ p°(X) is the initial fluid density
° [ pPdV = [, pdv

o [ pdv= [ p[d|dV

o p|=p°

Mass integral relation
) ) dyp
° 0t/wp(‘0dv 8t/gp|J|s0d /qul at ¢

0 dop
g dv= [ p<¥4q
°at/wwv /wpdt v
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Eulerian and Lagrangian descriptions Lagrangian descriptions

Differential operators transformations
@ ¢(x,t) is afluid vector valued variable with sufficient smoothness

® Vi-¢=15Vx.(J"9)

Piola compatibility condition

o Vx.Jr=0 = [,Vx.J*dV=[ J*NdS= [, nds=0

Total Lagrangian formulation

|
(<

° T Vxu=0 Deformation gradient tensor
° po% +Vx.({*FU) =0 Fixed configuration

Integral conservative form

o — [ pUdV+ [ F(U).J*NdS=0 Fixed configuration
ot Q (2,9}
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dimensional discretization DG general framework

@ Two-dimensional discretization
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Two-dimensional discretization DG general framework

(s +1)" order DG discretization

@ {Q:}c a partition of the domain €2 into polygonal cells
o {0f}k—0.k basis of P5(Q;), where K + 1 = (t1)(st2)

K
° ¢(X, 1) = ¢f(t)of(X) approximate function of (X, t) on Q.
k=0

@ m, constant mass of cell Q.

1
0 X.= (X, Vo) = F/ p°(X) XdV center of mass of cell Q;
Q

c {
1 .
® (¢), = i /Q p°(X) #(X)dV mean value of function ¢ over Q.

° (¢.¢)C:/ P°(X) ¢(X)(X)dV associated scalar product

Qe
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wo-dimensional discretization DG general framework

Taylor expansion on the cell, located at the center of mass

X Xc k —J Y — CI ok .
o) = o)+ 333! () Y78 i (%e) + o{IX — Xl
k=1 j=0

(s + 1)™ order scheme polynomial Taylor basis
@ The first-order polynomial component and the associated basis function
65=(0), and of =1
@ The k"-order polynomial components and the associated basis functions

ok ¢
axkigyi o)

R, = T [(Xg;:v)“‘(vgzc)— (o) ts)) ]
where 0 < k <s,j=0...k, AX; = ZmeXmn gnd AY, = YmecYmn

[3 H.Luo, J. D. BAUM AND R. LOHNER, A DG method based on a Taylor
basis for the compressible flows on arbitrary grids. J. Comp. Phys., 2008.

P = (AX) T(AYeY
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Two-dimensional discretization DG general framework

@ First moment associated to the basis function o§ = 1 is the mass
averaged value

(158 = <¢>c

@ The successive moments can be identified as the successive derivatives
of the function expressed at the center of mass of the cell

. )
c _ k—j j__~ ¥
k(k2+1)+l- - (AXC) (A YC) 8Xk_/6Y/ (XC)

@ The first basis function is orthogonal to the other ones
(08 . O'E)C = M 50k

@ Same basis functions regardless the shape of the cells (squares,
triangles, generic polygonal cells)
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Two-dimensional discretization DG general framework

Total Lagrangian gas dynamics system

aU t
© 5+ Vi (F(U) = 0

v

Local variational formulations

c
°/poauh cqvy = 3U /poacoﬁ
o, Ot 0

:/ (ug).J*vXa,dv_ F(U) . of J*NdS
Q¢ (o192

e F(U)=(-u, 1(1)p, 1(2)p, pu)' is the numerical flux
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Mass matrix properties

° /Q pPofogdV = (of . k), generic coefficient of the symmetric positive

definite mass matrix

° (ag - og)c = m¢ ok Mass averaged equation is independent of the other
polynomial basis components equations

Interior terms

° / F(UR).J* VxofdV is evaluated through the use of a
Q¢

two-dimensional high-order quadrature rule

Boundary terms

° / F(U).o7J* NdS required a specific treatment to ensure the GCL
loR

@ It remains to determine the numerical fluxes
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Two-dimensional discretization Deformation gradient tensor

Requirements
@ Consistency of vector J*NdS = nds at the interfaces of the cells
@ Continuity of vector J*N at cell interfaces on both sides of the interface
@ Preservation of uniform flows, J* = |J|J~! the cofactor matrix

J*VxofdV = of J*'NdS of (Vx.J*)dV =0
Q o9 Q

Generalization of the weak form of the Piola compatibility condition

Tensor J discretization

@ Discretization of tensor J by means of a mapping Qe
defined on triangular cells
@ Partition of the polygonal cells in the initial
configuration into non-overlapping triangles
ntri
Q=J7°

i=1
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Two-dimensional discretization Deformation gradient tensor

(s + 1) order continuous mapping function

@ We develop ® on the Finite Elements basis functions /\g in 7; of degree s

BH(X, 1) = D NG(X) Bg(t),
qeQ(i)

where Q(/) is the 7; control points set, including the vertices {p~, p, p*}
0 o4(t) = ©(Xg, 1) = Xgq

0@y d _ :
© 5 =Us = atJf(X,t)=q629(i)uq(t)®va;(X)

Outcome
@ Satisfaction of the Piola compatibility condition everywhere
@ Consistency and continuity of the Eulerian normal J*N
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Two-dimensional discretization Discretization

Example of the fluid flow mapping in the fourth order case

p7 —
p p P

Figure : Nodes arrangement for a cubic Lagrange Finite Element mapping.

Curved edges definition using s+ 1 control points
@ Projection of the continuous mapping function ® on the face f,,+

X Q=X+ D XgAg(Q) +Xpr Ao (),
qe(ppt)\{p,p*}

where Q(pp™) is the face control points set, ¢ € [0, 1] the curvilinear
abscissa and )4 the 1D Finite Element basis functions of degree s
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Two-dimensional discretization Discretization

Local variational formulations P Ny

ntri

ous
0 h *
<) /f’ : ojcdv_ ?1 CF(U;:’)'J ande

= /F(U).UJ-CJ*NdL

n e B
P
.

Polynomial assumptions on face f,,+

0 FU), (O =FaM(O+ Y FacrqlQ) +Fpehp(Q)
q\{p,p*}

Polynomial properties on face f,,+

ox o\
© J*NdL (Q)=ndl = —=d¢  xe; =Y —2(C) (xqxe)

oC 7 oC
° of (Q)=0f(Xp)h()+ Y of(Xa)Aa() +0f(Xp)Apt(C)
q\{p.p*}
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Two-dimensional discretization Discretization

Fundamental assumptions

:I:
=Up, Vcel(p) and Uy =Ugr =Ug

Procedure
@ Analytical integration + index permutation
Weighted corner normals

CARY el _/ AoojJ* NdS
p

. . P
° Iy = / Ao J*NdS

o lenhy = o npd + I i
Weighted face control point normals

ot
0/ n’qc_/ )\qO’jJ*NdS
P

Frangois Vilar (Brown) High-order Cell-Centered DG scheme May 4th, 2015 19/48



Two-dimensional discretization Discretization

Semi-discrete equations GCL compatible

o ue ntri
h c _ c * V4
O/QCp opof AV = Z/ F(Uf).J* Vxofd

“ % [(F i 4Pl i)+ 3 Fotorty]

pEP(c) q\{p.p*}

Entropic semi-discrete production

@ TdS=de+ pdr=de—u.du+ pdr Gibbs identity
@ Combining the different variational formulations leads to

/ 195w = [ (B pf)(us —b).J"NdS
Qe ot o9
o A sufficient condition to satisfy [, p°T%2dV >0 is

_ o~ J*N -~

@ z>0 is alocal approximation of the acoustic impedance z=pa
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Two-dimensional discretization Control point solvers

Qe,

Node cell set Face point cell set

Conservation + no boundary condition
oug
0~ ~h
° EC / P 5 dvV =0

Sufficient conditions

° Z (:5;0 oo’ + Pac /;c,on;éo) =0 Node condition
ceC(p)
® Do I9,n%, + Pgr I9gN05 = 0 Face condition

vy
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Two-dimensional discretization Control point solvers

Nodal velocity

° [Pﬁ(xp) /Scngc — My (Up — Uﬁ(xp))] =0
ceC(p)

S =00 p=0 o p=0Y 1 3+ [0 0 o 0
@ My = Zpc /pc (npc & Ny )+ch lpc (npc & Npg )

o (X0 Mpo)to= > [Mpo uf(Xp) + p5(Xp) o]
ceC(p) cec(p)

Face control point velocity
o (pp(Xp) — pﬁ(Xq))ISLn?,L — Mg (Uq — (X)) — Mgr(Tg — uf(Xq)) =0
® Mge = Zge Mg = Zgc (’SL"?,L ® "3L)

Zg quy()iq) + %qﬂ uﬁ(Xq)> _ Pﬁ({q) —fk(xq)
ZqL + ZgR ZqL + ZgR

— )
° Mg Uqu( TRLETH

Zg uk({q) + %qu uﬁ(Xq)) O pﬁ()fq) _BfL;(Xq)
ZqL + ZgR at Zg + Zgr

® (Uug.ny) = (
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Two-dimensional discretization Control point solvers

Tangential component of the face control point velocity

> L > R
_ ZLU(X)+ZRU (X)
o (U,. 1) = (ZaYni%a) * 2R A Ra)) o
ZqL+ZqF1'

Face control point velocity

= (EqL un(Xq) + Zgr Uﬁ(xq)>  PR(Xq) — Pi(Xq)

° U, L. n’
ZqL aF ZqR

> > L
ZqL + ZgR g

Deformation tensor

o Ji= ) To®Vilg
QeQ(i)

Interior points velocity

@ Ug = uj(Xq,t)
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Two-dimensional discretization Initial deformation

Composed derivatives

@ Jr(X,, 1) = Vx®7(X/, 1)
= Vx®u(X,t) o Vx ®o(X;) (X0

— Ju(X, 1) Jo(X)) 7

o Ur(Xr, 1) = [Ju(X; )| [Jo(X/)|

Mass conservation v
0 p°1Jo| = p|J7| (X,

Modification of the mass matrix

° / v
L ot -
successive moments of functlon W

@ New definitions of mass matrix, of mass averaged value and of the
associated scalar product

Z 2k / 01Jo|oj o dQ"  time rate of change of
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Numerical results Second-order scheme

e Numerical results
@ Second-order scheme
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Numerical results

Sedov point blast problem

NN
—_——
.
_
NN

0.4

(a) Second-order scheme.

0.6

Figure : Point blast Sedov problem on a Cartesian grid made of 30 x 30 cells: density.

order scheme

T
solution
2ndorder o

(b) Density profiles.
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Numerical results Second-order scheme

Sedov point blast problem on unstructured grids
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(a) Polygonal grid. (b) Triangular grid.
Figure : Unstructured initial grids for the point blast Sedov problem.
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Numerical results Second-order scheme

edov point blast problem a polygonal grid

‘ ‘ ‘ ‘ oliion
6L 2ndorder o
5L |
all |
2 ‘ 4
1r - ®eeaes -
o ; - : ; ; :
0.4 0.6 X 5 0 0.2 0.4 0.6 0.8 1 12 14
(a) Second-order scheme. (b) Density profiles.
Figure : Point blast Sedov problem on an unstructured grid made of 775 polygonal
cells: density map.
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Numerical results Second-order scheme

‘ ‘ ‘ ‘ ‘ oliion

6L N 2ndorder o
5L |
all |
all |
all |

1 0 L e L 1 L
0.4 0.6 X 5 0 0.2 0.4 0.6 0.8 1 12 14
(a) Second-order scheme. (b) Density profiles.
Figure : Point blast Sedov problem on an unstructured grid made of 1100 triangular
cells: density map.
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Numerical results Se order scheme

T T
exact solution

S W 2id ey

- atete

: L L L L L
0 0.1 02 03 0.4 05 0 0.05 0.1 0.15 02 0.25 03 0.35 04

(a) Second-order scheme. (b) Density profiles.

Figure : Noh problem on a Cartesian grid made of 50 x 50 cells: density.
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Numerical results Second-order scheme

Taylor-Green vortex problem

1 1
0.9 0.9
0.8 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1

00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) Second-order scheme. (b) Exact solution.
Figure : Motion of a 10 x 10 Cartesian mesh through a T.-G. vortex, at t = 0.75.
b
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Numerical results Second-order scheme

Taylor-Green vortex problem

L1 Ly [ L [ L |

h E, | a E, la, | E |a

11—0 5.06E-3 | 1.94 || 6.16E-3 | 1.93 || 2.20E-2 | 1.84

% 1.32E-3 | 1.98 || 1.62E-3 | 1.97 || 5.91E-3 | 1.95

4l0 3.33E-4 | 1.99 || 4.12E-4 | 1.99 || 1.53E-3 | 1.98

& 8.35E-5 | 2.00 || 1.04E-4 | 2.00 || 3.86E-4 | 1.99

o5 | 2.09E-55| - [[2.60E-5] - [ 9.69E-5[ -

Table : Rate of convergence computed on the pressure at time t = 0.1.
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Numerical results Third-order scheme

e Numerical results

@ Third-order scheme
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Numerical results Third-order scheme

Symmetry preservation

\\l\lllll“\\m\‘“ ’
(a) First-order scheme. (b) Second-order scheme.
Figure : Sod shock tube problem on a polar grid made of 100 x 3 non-uniform cells.
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Numerical results Third-order scheme

mmetry preservati

11 T T T T

solution

3rd order ¢

1

0.9

0.8

0.7

0.6

0.5

0 01 02 03 04 05 06 07 08 09 1

(a) Density map. (b) Density profiles.

Figure : Third-order DG solution for a Sod shock tube problem on a polar grid made of
100 x 3 non-uniform cells.
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Numerical results Third-order scheme

One ular cell polar Sod shock tube problem

11 T

solution

3rd order o

0 01 02 03 04 05 06 07 08 09 1

(a) Density map. (b) Density profiles.

Figure : Third-order DG solution for a Sod shock tube problem on a polar grid made of
100 x 1 cells.
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Variant of the incompressible Gresho vortex problem

> :#o‘\‘“\\}\\\\\\\\\\
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(a) First-order scheme. (b) Second-order scheme.

Figure : Motion of a polar grid defined in polar coordinates by (r,0) € [0, 1] x [0, 2x],
with 40 x 18 cells at t = 1: zoom on the zone (r, §) € [0,0.5] x [0, 27].




Numerical results Third-order scheme
Variant of the incompressible Gresho vortex problem
0.5 0.5

(a) Third-order scheme. (b) Exact solution.

Figure : Motion of a polar grid defined in polar coordinates by (r,0) € [0, 1] x [0, 2x],
with 40 x 18 cells at t = 1: zoom on the zone (r, §) € [0,0.5] x [0, 27].




Numerical results Third-order scheme

Variant of the Gresho vortex problem

56 T T T

solution

solution

0.4 06

(a) Pressure profiles.

0.8 1

0.4 06 08

(b) Velocity profiles.

Figure : Gresho variant problem on a polar grid defined in polar coordinates by
(r,0) € [0,1] x [0, 2], with 40 x 18 cells at t = 1.
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Numerical results Third-order scheme

Variant of the Gresho vortex problem

1.06 T T T T
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(a) Density profiles.

(b) Angular momentum time evolution.

Figure : Gresho variant problem on a polar grid defined in polar coordinates by
(r,6) € [0,1] x [0, 2], with 40 x 18 cells at { = 1.
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Numerical results Third-order scheme

Kidder isentropic compression

1 1

09 0.9

08 08F

07 07}

06 06F

05 05F

0.4

03

02

01F

% 01 02z 03 04 05 06 07 08 09 1 o 01 02 03 04 05 06 07 08 09

(a) First-order solution. (b) Second-order solution

Figure : First-order and second-order DG solutions for a Kidder isentropic
compression problem on a polar grid made of 10 x 5 cells.
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Numerical results Third-order scheme

Kidder isentropic compression

' ' ' hi: exact solul‘\on
1F Ri: 1st order
Ri: 2nd order ---@--
Re: exact solution
Re: 1st order
09 oeeneiiaig. Re: 2nd order ---o--- |
0.8 4
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03 | q
‘0 0.(;01 0.(;02 0.(;03 0.(;04 0.(;05 0.(;06 0.007
Figure : First-order and second-order DG solutions for a Kidder isentropic
compression problem on a polar grid made of 10 x 5 cells: shell radii evolution.
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Numerical results Third-order scheme

Kidder isentropic compression

R\ exam scluﬂon
1k Ri: 3rd order ---o-- |
Re: exact solution
Re: 3rd order ---@
09 4
08 B
07 4
06 1
05 B
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1 04 ‘0 o.(;m 0.‘002 0.803 0,(;04 0.(;05 0.‘006 0.007
(a) Meshes attime t =0and t = t;. (b) Shell radii evolution.
Figure : Third-order DG solution for a Kidder isentropic compression problem on a
polar grid made of 10 x 3 cells.
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Numerical results Third-order scheme

Taylor-Green vortex problem

1 1
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(a) Third-order scheme. (b) Exact solution.
Figure : Motion of a 10 x 10 Cartesian mesh through a T.-G. vortex, at t = 0.75.
)
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Numerical results Third-order scheme

Taylor-Green vortex problem

L1 Ly [ L [ L |

h E, | a E, la, | E |a

11—0 2.67E-4 | 2.96 || 3.36E-4 | 2.94 || 1.21E-3 | 2.86

% 3.43E-5 | 2.97 || 4.36E-5 | 2.96 || 1.66E-4 | 2.93

4l0 4.37E-6 | 2.99 || 5.59E-6 | 2.98 || 2.18E-5 | 2.96

% 5.50E-7 | 2.99 || 7.06E-7 | 2.99 || 2.80E-6 | 2.99

s | 6.91E-8 | - | 887E-8| - | 853E-7[ -

Table : Rate of convergence computed on the pressure at time t = 0.1.
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Taylor-Green vortex problem

D.O.F N E E El time (sec)
600 | 24 x25 || 2.67E-2 | 3.31E-2 | 8.55E-2 2.01
2400 | 48 x 50 || 1.36E-2 | 1.69E-2 | 4.37E-2 11.0

Table : First-order DG scheme at time t = 0.1.

D.O.F N E] E Ell time (sec)
630 | 14 x 15 || 2.76E-3 | 3.33E-3 | 1.07E-2 2.77
2436 | 28 x 29 || 7.52E-4 | 9.02E-4 | 2.73E-3 11.3

Table : Second-order DG scheme without limitation at time t = 0.1.

D.O.F N E] E Eil time (sec)
600 | 10 x 10 || 2.67E-4 | 3.36E-4 | 1.21E-3 4.00
2400 | 20 x 20 || 3.43E-5 | 4.36E-5 | 1.66E-4 30.6

Table : Third-order DG scheme without limitation at time t = 0.1.
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0.4

(a) Third-order scheme.

Figure : Point blast Sedov problem on a Cartesian grid made of 30 x 30 cells: density.
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(b) Density profiles.
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Conclusions

@ Development of generic high-order DG schemes for the 2D gas dynamics
system in a total Lagrangian formalism

@ GCL and Piola compatibility condition ensured by construction

@ Dramatic improvement of symmetry preservation and angular
momentum conservation by means of third-order DG scheme

@ Analytical proof of the positivity-preserving property of these schemes,
form the first-order to the high-orders by means of a special limitation

@ High-order limitation on moving high-order geometries
@ Extension to ALE

@ Extension to magnetohydrodynamics (FCM)

@ Code parallelization

@ Extension to 3D
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