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Introduction Discontinuous Galerkin scheme

@ Introduced by Reed and Hill in 1973 in the frame of the neutron transport

@ Major development and improvements by B. Cockburn and C.-W. Shu in
a series of seminal papers

vy

Procedure

@ Local variational formulation

@ Piecewise polynomial approximation of the solution in the cells
@ Choice of the numerical fluxes

@ Time integration

Advantages

@ Natural extension of Finite Volume method

@ Excellent analytical properties (L, stability, hp—adaptivity, .. .)

@ Extremely high accuracy (superconvergent for scalar conservation laws)
@ Compact stencil (involve only face neighboring cells)
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Introduction Discontinuous Galerkin scheme

1D scalar conservation law

ou O0F(u)
E—F Bt =0, (X,t)wa[O,T]
@ u(x,0) = up(x), XEw

(k + 1) order discretization
@ {w;}; a partition of w, such that w; = [x;_ 1 Xigs 1]

00=10<t"<...<tN=T apartition of the temporal domain [0, T]
@ up(x,t) the numerical solution, such that  up,, = uj, € P¥(w;)
K1

)= up(t) om(x)
m=1

@ {om}m abasisof PX(w))

Variational formulation on w;

° / (8‘1 + 8F(U)> pdx  with ¢(x) atest function

ot ox
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Integration by parts

o | %¢ dx — /w F(u)%f ax + [Fu)y] ™

P _p
Xi—l
2 v
Approximated solution
@ Substitute u by u
@ Take 3 among the basis function op
k+1 i
ouy, B i\00p X1
° ) = /w'amapdx_/w‘ F(uh) =, ax = []-'ap}x‘ 1
m=1 U i =4
Numerical flux
0 Fipy = F (Uhlxi g 0, U (xip g, 1))
F(u)+ F
o Py = FTFWD 2V,

@ v(u,v) =max(|F'(u)],|F'(v)]) Local Lax-Friedrichs
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Introduction Discontinuous Galerkin scheme

Subcell resolution of DG scheme
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Figure : Linear advection of composite signal after 4 periods
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Introduction Discontinuous Galerkin scheme

Subcell resolution of DG scheme

12 ‘ exa‘ct solution‘
9th order DG - 20 cells —e—

A 2nd order DG - 90 cells
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Figure : Linear advection of composite signal after 4 periods

v

Francois Vilar (IMAG) Subcell limitation through flux recontruction May 24th, 2018 5/56



Introduction Spurious oscillations - Gibbs phenomenon

Gibbs phenomenon

@ High-order schemes leads to spurious oscillations near discontinuities
@ Leads potentially to nonlinear instability, non-admissible solution, crash
@ Vast literature of how prevent this phenomenon to happen:

—> a priori and a posteriori limitations

@ Artificial viscosity
@ Flux limitation
@ Slope/moment limiter

@ Hierarchical limiter
@ ENO/WENO limiter

A posteriori limitation

@ MOOD (“Multi-dimensional Optimal Order Detection”)
@ Subcell finite volume limitation
@ Subcell limitation through flux reconstruction
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Introduction Objectives

Admissible numerical solution

@ Maximum principle / positivity preserving
@ Prevent the code from crashing (for instance avoiding NaN)
@ Ensure the conservation of the scheme

Spurious oscillations

@ Discrete maximum principle
@ Relaxing condition for smooth extrema

@ Retain as much as possible the subcell resolution of the DG scheme
@ Minimize the number of subcell solutions to recompute
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s a subcell finite volume Flux reconstruction

e DG as a subcell finite volume
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DG as a subcell finite volume

@ Rewrite DG scheme as a specific finite volume scheme on subcells
@ Exhibit the corresponding subcell numerical fluxes: reconstructed flux

Variational formulation

8”;7 . i 31!) _ X/‘+% _ K .
° /m = zpdx_/w F(uh) 5 dx [ﬂ,&hé =0, Ve € PK(w;)

@ Quadrature rule exact for polynomials up to degree 2k
@ F(ul) =~ Fl € Pk+1(w;)

ou, OF] ,. X,
° /w,- = z/)dx_—/w - wdx+{(Fh—f)1/z}

i

(collocated or projection)

Ty Tt
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Subresolution basis functions

@ w; is subdivided in k + 1 subcells S!, = [Xm_1, Xm]
@ Let us introduce the k + 1 basis functions {¢m}m such that Vv € PX(w;)
¢mwdx:/ Pdx, Vvm=1,...,k+1

Wi S;n

k+1

0 D pm(x) =1
m=1

@ Let us define v, = @ 1 dx the subcell mean value
m| JSi,

Variational formulation
oul, B oF] ; Xisd
O/w,- ot Qsmdx——/wi 6X¢mdx+[(,:h_]:)¢m})(i12
Y OF! . X, 1
i m _ h Fi_ F +3
° |Sml=5 s ox T (Fh )‘bmh;
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Subcell finite volume

ot 1 1 %m : X1

—n _ - Fi — 2
TR TSN ([Fh]7m1 [9m (Fo—7) ]
@ We introduce the k + 2 function L,(x), the Lagrangian basis functions

associated to the flux points

N k+1 .
o Letusdefine Fj=> Fj,Ln(x) € P*""(w;) such that
=0

X,

Fi _ ”"_{Fh]xm1[¢’"<F’§f”x:+i’ vm=1,... k

Fo=F_, and Fi 4 =Fy,:

)
T
)
| |
A\

Reconstructed flux

© Fiy= FilGim) ~ C7) (FlOx-3) = Firy) = LT} (Fhay) = Fivy)
k+1

- C,(ini = Z Pp(Xi_1) and JT1) = Z¢p(X/+‘)

p=m+1
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Correction terms

, i1
o Let B € R*' bedefinedas B = (—1)+1 A+ DK+))!

M2k +1 =)t
0 F = TN ymoo,.. k4
i+3 _Xi—%
1_(gm) 1_(1_gm)
o C") = : B and C7= : B
2 2
1 — (Em)t! 1T—(1—&m)t

Subcell finite volume equivalent to DG

0T, 1 rz7%

= — n m= 1 . o k 1

at |k il vm=t. okt

@ Other choice on the correction terms lead to different schemes (spectral
difference, spectral volume, ...)

Xm—1
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DG as a subcell finite volume Flux reconstruction

Pointwise evolution scheme

i
/¢>m a“” 9y ax—0,  vm=1,... k+1

ot ox
au,, OF! . ou, OF
81‘ 8x)dx_0’ Vi € PM(wj)) = 5t T ax = Op«

O Ul (Xm, ) . 0 F (Xm, 1)
ot 15)¢ )

Reconstructed flux
o Fi = Fi + (F( 3 1)—7,-,%) gLs(X)+( h(Xiey) = w) 9rs(X)

@ The gi5(x) and ggrs(x) are the correction functions taking into account
the flux discontinuities

@ To recover DG scheme, the correction functions writes

=0

Vm=1,... k+1,

k-+1 k+1
as(x) =Y C" La(x) and  gs(x = 7 Lm
m=0
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DG as a subcell finite volume Flux reconstruction

Reconstructed flux

. i+1
143 Fy

Fitd

D=

Figure : Reconstructed flux taking into account flux jumps
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Flux reconstruction / CPR

@ In the case of DG scheme, the correction functions g,5(x) and ggs(x)

are nothing but the right and left Radau P¥ polynomials

[3 H.T. HUYNH, A Flux Reconstruction Approach to High-Order Schemes
Including Discontinuous Galerkin Methods. 18th AIAA Computational
Fluid Dynamics Conference Miami, 2007.

[3 Z.J. WANG and H. Gao, A unifying lifting collocation penalty formulation
including the discontinuous Galerkin, spectral volume/difference methods
for conservation laws on mixed grids. JCP, 2009.

@ In the FR/CPR approach, the reconstructed flux is used pointwisely at
some solution points to resolve the PDE

Subcell finite volume
@ The reconstructed flux is used as a numerical flux for the subcell finite
volume scheme
@ This demonstration is not restricted to the flux collocation case
@ The correction terms are very simple and explicitly defined
@ There is no need to make use of Radau polynomial

May 24th, 2018 14/56
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A posterit ubcell limitation

e A posteriori subcell limitation
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A posteriori subcell limitation Projection

RKDG scheme

@ SSP Runge-Kutta: convex combinations of first-order forward Euler

@ For sake of clarity, we focus on forward Euler time stepping
k+1

o Uh Z Um Um
i,n+1 i,n i, n0o O0p n Xi+%
° u" opdx = | Uy opdx + At Fy B dx — []-' ap}
wj wj wj %

Projection on subcells of RKDG solution

@ A k' degree polynomial is uniquely defined by its k 4+ 1 submean values

. . . 1
@ Introducing the matrix IT defined as mmp = @
ml| JSi,

in —i,n
uy uy

n —i,n
Uit Uk'ys
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A posteriori subcell limitation Projection

Figure : Polynomial solution and its associated submean values
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A posteriori subcell limitation Detection

@ Compute a candidate solution uf™" from wuf through unlimited DG
@ For each cell, compute the submean values {u;"""'}n,
@ We assume that, for each cell, the {T/"},, are admissible

Physical admissibility detection (PAD)

@ Check if U,’;;”“ lies in an convex physical admissible set (maximum
principle for SCL, positivity of the pressure and density for Euler, . ..)

@ Check if there is any NaN values

Numerical admissibility detection (NAD)
@ Discrete maximum principle DMP on submean values:

min(@ 7, TE" T ) < T < max(@y T upt )
P P

@ This criterion needs to be relaxed to preserve smooth extrema
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A p ubcell limitation Dett

elaxation of the DMP

- n+1 5 n+1
"] VL = 6Xul - A2XI 8)()(”,’
. ———n+1 ——n+1
@ Viin\ max = Min \ max (OxU; ,0xU;_1 )
v —a un+1
- n+1 . - i
olIf (vp>0xu; ) Then ap= m|n(17max—xn’+1)
VR—axul'
v Tn+1
———n+1 . IS ;
o If (VL < axu,' ) Then o) = mln(17mlr17xn+1)
VR _6)(
- n+1 = n+1
(*] VR = 8Xul A2X, 8)()(“,‘
. n+1
@ Vinin\ max = mln\max(ax ax Ui )
v T n+-1
—— n+1 .
olf (va>awu) Then ag= mln(1,max—xn+1)
VR — 8x
1
——n+1 . Vi Oxu
o If (VR < 8XU, ) Then aR — mln(1, mmi%)
VR - ax
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Relaxation of the DMP

@ a = min(a, aR)

@ If (w=1) Then DMP is relaxed

Hierarchical limiter

iy

d I I
I I I I
I I I 1
o 3 Z. 1 . 1 Z. 3
7,75 1—5 Z+2 Z+2

—n+1 —n+1
@ Vp(x) =0xU;  + (X — Xj) OxxU;

[3 M. YANG and Z.J. WANG, A parameter-free generalized moment limiter
for high-order methods on unstructured grids. AAMM., 2009.

[3 D. KuzMIN, A vertex-based hierarchical slope limiter for p-adaptive
discontinuous Galerkin methods. J. of Comp. and Appl. Math., 2010.

19/56
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A posteriori subcell limitation Correction

Marked subcells

@ If a subcell mean value does not respect the PAD and NAD, the
corresponding subcell is marked

@ For all the marked subcells, as well as their first neighbors, we go back to
time t" to recompute the submean value

Corrected reconstructed flux

o Fi,=F(@. un if SI , or Si, is marked

m > Y“m41

—i—1,n

: —in —i+1,n
with Uy" = U,

and U7, =T,
e Fl.=F otherwise

Modified submean values

i

. . At ~.
o U, =Ty — —(Fn—Finy)

| Sl
@ Check if the modified submean values are now admissible

. . t
@ By means of II-!, get the corrected moments (u{”’+1 N u,i+”1+1>
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Limited reconstructed flux

~
(3
m

|
|
|
1
0 X1 Bl by

Figure : Correction of the reconstructed flux

Frangois Vilar (IMAG) Subcell limitation through flux recontruction May 24th, 2018



Flowchart

@ Project u™" to get the submean values T,
@ Check T/ ”+‘ through PAD and NAD

Q If T™" is admissible go further in time, otherwise modify the
corresponding reconstructed flux values

Fi_y=F@.,.uy" and Fi=F@y u.,)

m—1>

© Through the corrected reconstructed flux, recompute the submean values
for tagged subcells and their first neighbors

@ Return to point 2

Conclusion

@ The limitation only affects the DG solution at the subcell scale
@ The limited scheme is conservative at the subcell level
@ In practice, few submean values need to be recomputed
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Numerical results 1D scalar conservation laws

e Numerical results
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Numerical results 1D scalar conservation laws

Initial solution on x € [0, 1]

@ up(x) = sin(27mx)
@ Periodic boundary conditions

1
exa‘cl solution

9th order DG —o—
0.8 DG cell boundaries = |

06
0.4
0.2

0

0.2

0.4

06

-0.8

A L L I
0 0.2 0.4 0.6 0.8 1

Figure : Linear advection with a 9th DG scheme and 5 cells after 1 period
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Numerical results 1D scalar conservation laws

[ 1 Ly H Lo |
EL |4, E, | a.
8.07E-11 | 9.00 || 8.97E-11 | 9.00

1.58E-13 | 9.00 || 1.75E-13 | 9.00
3.08E-16 s 3.42E-16 =

B -B-B - =

Table: Convergence rates for the linear advection case for a 9th order DG scheme
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Numerical results 1D scalar conservation laws

Linear advection of a square signal after 1 period

exact solution
9th order limited DG —e—
1r corrected subcells o
DG cell boundaries =
0.8 |- 1
0.6 |- 1
04 |- 1
0.2 |- 1
0 oo
0 0.2 0.4 0.6 0.8 1
Figure : 9th order limited DG: NAD criterion
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Numerical results 1D scalar conservation laws

Linear advection of a square signal after 1 period

exact solution
9th order limited DG —e—
1 > corrected subcells o
DG cell boundaries =
0.8 1
0.6 1
0.4 i
0.2 1
0 -2
0 0.2 0.4 0.6 0.8 1
Figure : 9th order limited DG on 10 cells: NAD and PAD criteria
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Numerical results 1D scalar conservation laws

Linear advection of a square signal after 1 period

exact solution
9th order limited DG —e—
1r corrected subcells o
DG cell boundaries =
0.8 |- 1
0.6 |- 1
04 |- 1
0.2 |- 1
0
0 0.2 0.4 0.6 0.8 1
Figure : 9th order limited DG on 10 cells: subcell DMP
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Numerical results 1D scalar conservation laws

Linear advection of a are signal after 1 period

exact solution
FR limitation —e—

1r -~ subcell FV limitation T

DG cell boundaries =
0.8 |- 1

|

0.6 |- b 1
0.4 | I g
0.2 |- 1

0 B e e

L L L L

0 0.2 0.4 0.6 0.8 1

Figure : Comparison between flux reconstruction limitation and subcell finite
volume limitation

Frangois Vilar (IMAG) Subcell limitation through flux recontruction May 24th, 2018 28/56



Numerical results 1D scalar conservation laws

Linear advection of a are signal after 10 periods

T
exact solution
FR limitation —e—
1r - subcell FV limitation

DG cell boundaries =

0.8 - 1

|

04 1
0.2 - 1
0 - W -----®-- - W ---- W -
L L L L
0 0.2 0.4 0.6 0.8 1

Figure : Comparison between flux reconstruction limitation and subcell finite
volume limitation
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Numerical results 1D scalar conservation laws

Linear advection of a are signal after 50 periods

exa‘ct solution

FR limitation —e—

1r subcell FV limitation T
DG cell boundaries =
0.8 |- 1
| L

0.6 |- 1
04 |- 1
0.2 |- 1

0 R e R e o R R
0 0.2 0.4 0.6 0.8 1

Figure : Comparison between flux reconstruction limitation and subcell finite
volume limitation
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Numerical results 1D scalar conservation laws

Linear advection of a composite signal after 4 periods

exact solution
9th order limited DG —e—
1r corracted subcells ~ ® b
DG cﬁl boundaries =
0.8 - i
0.6 - f' i
04 - B
0.2 |- i
0 I
-1 -(;.5 0 0‘.5 1
Figure : 9th order limited DG after 4 periods on 30 cells
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Numerical results 1D scalar conservation laws

Linear advection of a composite signal after 4 periods

exact solution
9th order limited DG —e—

1r corrgcted subcells — © b
DG CHI boundaries =
0.8 - 1
06 [ % 1
04 | 1
0.2 | i
] Ak

1 -0.5 0 0.5 1

Figure : 9th order limited DG after 4 periods on 30 cells: subcell DMP

v
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Numerical results 1D scalar conservation laws

exact solution b
9th order limited DG —e—
DG cell boundaries =

0.5

-0.5

(;.2 (;.4 0[6 0.8 1
()b
Figure : 9th order limited DG on 10 cells for t; = 0.7 |
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Numerical results 1D scalar

0.6 - " exact solution E
9th order limited DG —e—
DG cell boundaries =
04 E
0.2 |- i
0
-0.2 + a
04 e
06 [ E
-0.8 - i
-1+ ) ) ‘ ‘ ‘ ‘ a
0.6 0.4 -0.2 0 0.2 0.4 0.6 0.8 1
(=)ee(+)
Figure : 9th order limited DG on 15 cells for t; = 1.2

v
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Numerical results 2D scalar conservation laws

2D grid and subgrid

. .

0s 0

08 08

07 07

06 06

05 05

04 04

03 03

02 02

01 01

0 0 0.2 0.4 0.6 0.8 1 0 0 0.2 0.4 0.6 0.8 1

(a) Grid (b) Subgrid
Figure : 5x5 Cartesian grid and corresponding subgrid for a 6th order DG

scheme
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Numerical results 2D scalar conservation laws

Initial solution on (x, y) € [0, 1]

@ Up(x,y) =sin(2r(x + y))
@ Periodic boundary conditions

exact solution q
6 limited DG —e—

07 05

-0.5

0 02 04 0.6 08 1 0 0.2 0.4 0.6 08 1 12 14 16 18 2

(c) Solution map (d) Solution profile

Figure : Linear advection with a 6th DG scheme and 5x5 grid after 1 period
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Convergence rates
Lo |

[ 1 Ly H
EL |4, E, | a,
2.10E-6 | 6.23 || 2.86E-6 | 6.24
2.79E-8 | 6.00 || 3.77E-8 | 6.00

3.36E-10 = 5.91E-10 =

Table: Convergence rates for the linear advection case for a 6th order DG scheme

N|-pl-oi—~ =

May 24th, 2018 37/56
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Linear advection of a square signal after 1 period

t
0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(e) Solution map (f) Solution profile

Figure : 6th order limited DG on a 15x15 Cartesian mesh
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Numerical results 2D scalar conservation laws

Linear advection of a square signal after 1 period

L “'"\ ‘ exa‘(_:t .solution‘ —
6th limited DG —e—
0.8 |- 1
0.6 - 1
0.4 i
0.2 |- i
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Figure : 6th order limited DG on a 15x15 Cartesian mesh

4
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Rotation of a composite signal after 1 period

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(9) Initial solution (h) Final solution

Figure : 6th order limited DG on a 15x15 Cartesian mesh
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Numerical results 2D scalar conservation laws

Rotation of a composite signal after 1 period

T e ST sk =
’ .
08 B 08 - | | "‘ “‘
.l \
07 4 If )|
|
05 |-
04 g 04 1 | I
‘ | | :
03 - q I | |
‘\ | \
02 B 02 | “ “ “‘
9 il |
| Iy
’ .
] . . . 0 | . . . \‘
(i) Solution profile for y = 0.25 (j) Solution profile for y = 0.75
Figure : 6th order limited DG on a 15x15 Cartesian mesh
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Numerical results 2D scalar conservation laws

Rotation of a composite signal after 1 period: x = 0.25

0.5

exaCt solution' —e—
6th limited DG —e—

045 -
04 |
035 -
03 |
025 -
02|
0.15 -
o1 |

0.05 -

0 L T
0 0.1 0.2

Figure : 6th order limited DG on a 15x15 Cartesian mesh

v
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Numerical results 2D scalar conservation laws

Burgers equation with uy(x, y) = sin(27 (x + y))

I
07 04 07 H B 05
I [
0.6 02 0.6 =:
1
0.5 0 0.5 == 0
0.4 0.2
0.3 0.4 -0.5
0.2 = 0.6 0.2 =
HEZ I
0.1 ;;; 0.8 0.1 !
T I
, [EEEHES , HEH
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(k) Solution at t = 0.007 () Solution att = 0.25

Figure : 6th order unlimited DG on a 10x10 Cartesian mesh
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Numerical results 2D scalar conservation laws

Burgers equation with up(x, y) = sin

04

..-.. o) 8@-88 eco)

) Solution map ) Detected subcells

Figure : 6th order limited DG on a 10x10 Cartesian mesh until t = 0.5
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Numerical results 2D scalar conservation laws

Burgers equation with up(x, y) =sin(2r (x + y)) att =0.5

exact solution
6th limited DG —e—
04 | R
0.2 - T
0
0.2 - J
0.4 | g
| | | | | | | | |

Figure : 6th order limited DG density profile on a 10x10 Cartesian mesh

4

Francois Vilar (IMAG) Subcell limitation through flux recontruction May 24th, 2018 45/56



Numerical results 2D scalar conservation laws

Burgers equation with composite signal

09 0.9 lus
0.1 0.1 04
OD 0.2 0.4 ) 0.6 0.8 1 : OO 0.2 0.4 0.6 0.8 1 !

(0) Initial solution (p) Solution att = 0.5
Figure : 6th order limited DG on a 10x10 Cartesian mesh
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Numerical results 1D Euler system

Initial solution on x € [0, 1] for v = 3
@ po(x) =1+0.9999999sin(7x), Up(x) =0, po(x) = (po(x))”
@ Periodic boundary conditions

1.8
exact solul‘ion
5th order limited DG —e—
16 DG cell boundaries =

0.8

0.6

0.4

0.2

0 I
-1 -0.5 0 05 1

Figure : Smooth flow problem with 5th DG scheme and 10 cells at { = 0.1
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Numerical results 1D Euler system

Conve rgence rates

L L | Ly |
h E | E, | a,
% 1.48E-5 | 4.35 || 2.02E-5 | 4.18
% 9.09E-7 | 4.88 || 1.38E-6 | 4.87
o || 3.09E-8 | 4.95 || 4.73E-8 | 4.86
11@ 1.00E-9 - 1.63E-9 -
Table: Convergence rates on the pressure for the Euler equation for a 5th order DG
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Numerical results 1D Euler system

Sod shock tube problem

T
exact solution

exact solution
9th order limited DG —+— 9th order limited DG —»—
1 DG cell boundaries = | 14 DG cell boundaries =

(q) PAD + NAD (r) PAD + subDMP

Figure : 9th order limited DG on 10 cells
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Numerical results 1D Euler system

exact solution
9th order limited DG —e—
1 DG cell boundaries =

0.6 -

05

04

03 -

02 |

0.1

L L r
0 0.2 0.4 0.6 0.8 1

Figure : 9th order limited DG on 10 cells
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Numerical results 1D Euler system

uble rarefaction problem

1 1 o= T T T T T T e
‘ TR = / ‘\\ et = /i'
09 [ DG cell boundaries ~ m 1 s 3rd order limited DG |
A8 J
08 B
08 4
07 1
06 - B 0.7 B
05 q 06 4
o4r 1 05 [ —
03 1
04 | B
02 4
01 | 1 0.3 - 4
o 0.2 L L
0 1 o 0.1 0.9 1
(s) Density (t) Internal energy
Figure : 9th order limited DG on 20 cells
.
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Numerical results 1D Euler system

blanc shock tube problem

0.25 T T
exact solution
7th order limited DG —e—
3rd order limited DG
0.2 | E 7 ,
0.15 | ,
0.1 _ i
0.05 |- Ty, i
S
S
0 L L L L L L L
0 1 2 8 4 5 6 7 8 9

Figure : 3rd order vs 7th order limited DG on 100 cells

v
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Numerical results 1D Euler system

Shock acoustic-wave interaction problem

5 T T
referential solution
7th order limited DG —e—
3rd order limited DG
4.5 DG cell boundaries = b

4,;,..:1!"‘"‘?‘ mﬁ\; Vﬁv ﬂ ﬂ 7

3L |
Z8 |= b
ol |
18 |= 1
L LR
et Fat
1k L \ /7 L
“ad LY
0‘5 L L L L
-4 2 0 2 4

Figure : 7th order limited DG on 50 cells

vy
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Numerical results 1D Euler system

ock acoustic-wave interaction problem

41 T T T 4.8 T T T T T T T T T
referental solution referentil solution
7ih order [mited DG —e— 7ih order Imited DG —»—
4.05 - 3rd order limited DG 3rd order limited DG
» DG cell boundaries L DG cell boundarf 7
4t ¢ A\
|
395 | |
|
|
39 | |

355 L L L 3 L L L L L L L L L
2 15 -1 05

(u) Zoom on [—2, 0] (v) Zoom on [0.5,2.3]

Figure : 7th order limited DG on 50 cells
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Numerical results 1D Euler system

Shock acoustic-wave interaction problem

5
referential éolution
7th order DG - PAD —e—
45 - 7th order DG - PAD + subDMP b

7th order DG - PAD + NAD
DG cell boundaries =
i i

IS

'—'-‘-'-'-'—litlt'-,,rr F‘e. P, $f11&:',

35 |- “3“ . g | Hll: ,
“}
3 | i
25 L \! -
| L
15 l B
1F ﬁ,.-. --.' A
I n® LN ]
05 L L L L
4 -2 0 2 4

Figure : 7th order limited DG on 50 cells

vy
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Numerical results 1D Euler system

ock acoustic-wave interaction problem

42

referential solution
7ih order DG - PAD
7ih order DG - PAD + NAD

. 7th order DG - PAD + subDMP
\ DG cell boundaries  ®

referential solution
7th order DG - PAD
AD + NAD

MP

(w) Zoom on [—2,0]

(x) Zoom on [0.5,2.3]

Figure : 7th order limited DG on 50 cells

Francois Vilar (IMAG)

Subcell limitation through flux recontruction

May 24th, 2018

56/56



	Introduction
	Discontinuous Galerkin scheme
	Spurious oscillations - Gibbs phenomenon
	Objectives

	DG as a subcell finite volume
	Flux reconstruction

	A posteriori subcell limitation
	Projection
	Detection
	Correction

	Numerical results
	1D scalar conservation laws
	2D scalar conservation laws
	1D Euler system


	3.Plus: 
	3.Reset: 
	3.Minus: 
	3.EndRight: 
	3.StepRight: 
	3.PlayPauseRight: 
	3.PlayRight: 
	3.PauseRight: 
	3.PlayPauseLeft: 
	3.PlayLeft: 
	3.PauseLeft: 
	3.StepLeft: 
	3.EndLeft: 
	anm3: 
	3.10: 
	3.9: 
	3.8: 
	3.7: 
	3.6: 
	3.5: 
	3.4: 
	3.3: 
	3.2: 
	3.1: 
	3.0: 
	2.Plus: 
	2.Reset: 
	2.Minus: 
	2.EndRight: 
	2.StepRight: 
	2.PlayPauseRight: 
	2.PlayRight: 
	2.PauseRight: 
	2.PlayPauseLeft: 
	2.PlayLeft: 
	2.PauseLeft: 
	2.StepLeft: 
	2.EndLeft: 
	anm2: 
	2.10: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	1.Plus: 
	1.Reset: 
	1.Minus: 
	1.EndRight: 
	1.StepRight: 
	1.PlayPauseRight: 
	1.PlayRight: 
	1.PauseRight: 
	1.PlayPauseLeft: 
	1.PlayLeft: 
	1.PauseLeft: 
	1.StepLeft: 
	1.EndLeft: 
	anm1: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	0.Plus: 
	0.Reset: 
	0.Minus: 
	0.EndRight: 
	0.StepRight: 
	0.PlayPauseRight: 
	0.PlayRight: 
	0.PauseRight: 
	0.PlayPauseLeft: 
	0.PlayLeft: 
	0.PauseLeft: 
	0.StepLeft: 
	0.EndLeft: 
	anm0: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


