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Introduction

Discontinuous Galerkin schemes High-order geometries

@ Natural extension of Finite Volume method
@ Piecewise polynomial approximation of the solution in the cells
@ High-order scheme to achieve high accuracy

Procedure

@ Local variational formulation
@ Choice of the numerical fluxes (global L? stability, entropy inequality)
@ Time discretization - TVD multistep Runge-Kutta

[3 C.-W. SHu, Discontinuous Galerkin methods: General approach and
stability. 2008.

@ Limitation - vertex-based hierarchical slope limiters

3 D. KuzMIN, A vertex-based hierarchical slope limiter for p-adaptive
discontinuous Galerkin methods. J. Comp. Appl. Math., 2009.
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High-order geometries

D V. DOBREV, T. ELLIS, T. KOLEV AND R. RIEBEN, High Order Curvilinear

Finite Elements for Lagrangian Hydrodynamics. Part I: General

Framework, 2010. Presentation available at

https://computation.llnl.gov/casc/blast/blast.html
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Cell-Centered Lag schemes

e Cell-Centered Lagrangian schemes
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Finite volume schemes on moving mesh

@ J. K. Dukowicz: CAVEAT scheme
A computer code for fluid dynamics problems with large distorsion and internal slip, 1986
@ B. Després: GLACE scheme
Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems, 2005
@ P-H. Maire: EUCCLHYD scheme
A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, 2007
@ G. Kluth: Hyperelasticity
Discretization of hyperelasticity with a cell-centered Lagrangian scheme, 2010
@ S. Del Pino: Curvilinear Finite Volume method
A curvilinear finite-volume method to solve compressible gas dynamics in semi-Lagrangian
coordinates, 2010

@ P. Hoch: Finite Volume method on unstructured conical meshes
Extension of ALE methodology to unstructured conical meshes, 2011

DG scheme on initial mesh

@ R. Loubere: DG scheme for Lagrangian hydrodynamics
A Lagrangian Discontinuous Galerkin-type method on unstructured meshes to solve
hydrodynamics problems, 2004
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e Lagrangian and Eulerian descriptions
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Lagrangian and Eulerian descriptions

Flow transformation of the fluid

@ The fluid flow is described mathematically by the continuous
transformation, ®, so-called mapping such as ® : X — x = ®(X, )

)

Figure: Notation for the flow map.

ow

where X is the Lagrangian (initial) coordinate, x the Eulerian (actual)
coordinate, N the Lagrangian normal and n the Eulerian normal

Deformation Jacobian matrix: deformation gradient tensor
@ F=Vx®=2% and J=detF>0
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Trajectory equation

° dx _ Ulx,t), x(X,0)=X

Material time derivative

d 0
° af(x, t) = af(x, )+ U.V,f(x,t)

Transformation formulas

@ FdX =dx Change of shape of infinitesimal vectors
o o0 =pJ Mass conservation
@ JdV =dv Measure of the volume change
@ JFINdS = nds Nanson formula
Differential operators transformations
@ V,P=1Vyx.(PJFY Gradient operator
o V,.U= %VX .(JF7'U) Divergence operator
September 3rd, 2013 Francois Vilar
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Piola compatibility condition

@ V,.G=0,where G = JF!is the cofactor matrix of F

/VX.GdV:/ GNdS = nds=0
Q on ow

Gas dynamics system written in its total Lagrangian form
dF

° ar VxU=0 Deformation gradient tensor equation
d 1 . .
° pod—t(;) ~Vx.(G'U)=0 Specific volume equation
0odU .
°p a +Vx.(PG)=0 Momentum equation
dE .
° poﬁ +Vx.(G'PU)=0 Total energy equation

Thermodynamical closure

@ EOS: P=P(p,c) where ¢=E— JU?
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@ Discretization
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Discretization

DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

(s +1)" order DG discretization

@ Let {Q.}c be a partition of the domain € into polygonal cells
o {0C}k—0.  basis of PS(Q;), where K 4 1 = (£H1(st2)

K
® ¢8(X,t) = ¢f(t)of(X) approximate function of ¢(X, t) on Qc
k=0

1
@ Center of mass X, = (X;, Ve)! = F/ P2(X)XdV,

c JQ,
where m. is the constant mass of the cell Q.
@ The mean value ( —/ X) p(X)dV
of the function ¢ over the cell Q

@ The associated scalar product (¢ . v)), = /Q P2 (X) 4(X) p(X)dV
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DG general framework Def n gradient tensor Disc Col pC Limitation Initial deformation

(X - XC“Y o) o .
o) = 42+ 373! itk (,) Y 8 (o) + ollX — Xol)
k=1 j=0

(s + 1) order scheme polynomial Taylor basis
@ The first-order polynomial component and the associated basis function
¢ =(¢), and og=1
@ The k™-order polynomial components and the associated basis functions

¢
axeigyi ¥ e

[ e (s )

Uk(k+1)+ j'(k Nl AX; AY. AXc AY. )
C

Whereo<k§3,j:0 k AXC MandAYc w

[3 H. Luo, J. D. BAUM AND R. LOHNER, A DG method based on a Taylor
basis for the compressible flows on arbitrary grids. J. Comp. Phys., 2008.

S ;= (AXe) T (AYeY
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Discretization

DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

@ First moment associated to the basis function o§ = 1 is the mass
averaged value

¢8 = <¢>c

@ The successive moments can be identified as the successive derivatives
of the function expressed at the center of mass of the cell

0
oXk=igYi

@ The first basis function is orthogonal to the other ones

o) K1) = (AX)(AYY (Xe)

(0§ - o,f)c = Mg dok

@ Same basis functions regardless the shape of the cells (squares,
triangles, generic polygonal cells)
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Discretization

DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

Lagrangian gas dynamics equation type

° poc:i—t +Vx.(G'f) =0, where fis the flux function

G = JFtis the cofactor matrix of F

Local variational formulations

K
do d¢f
0-%* ¢ _ k 0 _c_c
o/ﬂcp dta/dV ; it /Cpalade
= [ f.GVxofdV - [ f.0f GNdS
Q 9

Geometric Conservation Law (GCL)

@ Equation on the first moment of the specific volume

dJ gy - dledl :/ Vx.(GU)dV = [ T.GNdS
o, dt dt Q 9,
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Discretization

DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

Mass matrix properties

° /Q pPofogdV = (of . k), generic coefficient of the symmetric positive

C
definite mass matrix

@ (of. o,f)c = m¢dox mMass averaged equation is independent of the other
polynomial basis components equations

Interior terms

° / f.G on—/‘?dv is evaluated through the use of a two-dimensional

high-order quadrature rule

Boundary terms

° f. of GNdS required a specific treatment to ensure the GCL
Q¢

@ It remains to determine the numerical fluxes
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Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

Requirements
@ Consistency of vector GNdS = nds at the interfaces of the cells
@ Continuity of vector GN at cell interfaces on both sides of the interface
@ Preservation of uniform flows, G = JF—! the cofactor matrix

/ vao—fdvz/ 0fGNIS = [ of (Vx.G)dV =0
Qe 0 Q¢

Generalization of the weak form of the Piola compatibility condition

Tensor F discretization

@ Discretization of tensor F by means of a mapping Qe
defined on triangular cells

@ Partition of the polygonal cells in the initial
configuration into non-overlapping triangles

ntri

Q. =J7°
i=1
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Deformation gradient tensor S atic Col S Limitation Initial deformation

order continuous mapping function
@ We develop ® on the Finite Elements basis functions /\i7 in 7; of degree s

L, 1) = Y NG(X) Bq(t),
qeQ(i)
where Q(/) is the 7; control points set, including the vertices {p~, p, p™}
0 Py(t) = 2(Xq, 1) = Xq

do d .
° th =Ug= Fi(X. 1) = D Ug(t) @ VXA (X)
qeQ(i)
[3 G. KLUTH AND B. DESPRES, Discretization of hyperelasticity on
unstructured mesh with a cell-centered Lagrangian scheme. J. Comp.

Phys., 2010.

Outcome
@ Satisfaction of the Piola compatibility condition everywhere
@ Consistency and continuity of the Eulerian normal GN
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Di

| framework Deformation gradient tensor Discretization Control point Limitation Initial deformation

Example of the fluid flow mapping in the fourth order case

p .
p b p

Figure: Nodes arrangement for a cubic Lagrange Finite Element mapping.

Curved edges definition using s+ 1 control points
@ Projection of the continuous mapping function ® on the face f,p+

X, (O=XM(Q+ Y Xgh(Q) +XpApe(Q),

qeQ(pp)\{p.p*}

where Q(pp™) is the face control points set, ¢ € [0, 1] the curvilinear
abscissa and A4 the 1D Finite Element basis functions of degree s
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Disc
Deformation gradient tensor Discretization Control point sol Limitation

Local varlatlonal formulations

ntri

0d¢ _
° /Qcp e opaV = Z | GV fav

+Z/ f.of GNAL

pEP(c)

Initial deformation

|

Polynomial assumptions on face fy,+

0 fi (O)=TFid(O)+ D facrg(Q) +Frchp+(<)
a\{p.p*}

Polynomial properties on face f,,+

e G NdL|pp+(§) =ndl . = dqpp+ e, = Z %(g) (xq x €7)
q

6C ¢
aji . (Q) = 77 (Xp)Ao(C) + > 0f(Xg)Ag(Q) +of(Xp)Ap+(€)
a\{p.p"}
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Di

1eral framework Deformation gradient tensor Discretization Control point Limitation Initial deformation

Fundamental assumptions
° U;Jtc = Up: VC S C(p) and UqL = UqR = Uq
@ PU=PU = (PU)L=PxU, and (PU)g = Py Uq

Procedure
@ Analytical integration + index permutation

Weighted control point normals
o i = (3 A (O, () 22, ) < e
o helmgd = (I3 Mol (), () %5dq, ) x ez
o lenhy = o npd + I/t

® lhoMy = <f01 Aglypr (€)1, (€) %’édC|,,p+> X €z

j™ moment of the subcell forces

| p= g 4 pt gt i _p i
@ Foe = Ppclpc' Mpé’ + Ppelpc'Npe - and  Fo, = Pge Fe My
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Discretization

DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

Semi-discrete equations GCL compatible

ntri
/ Jof dV = —Z U.vaa,¢dV+Z Up - fichhe +5° Ug - thorthe
Q¢ pEP(C) Q\{P7P+}
d U ntri )
/ P g ordV = Z Pevngdvf S|Pt DO
Qe PEP(c) a\{p.p*}
ntri )
/p TR Z/PU.GVXadef > | Up.Foet D Ug.F
Qe pEP(C) a\{p.p"}

Equation on the first moment of the specific volume

d _
° E‘;c‘ = / U.GNdL= Y (Up. B0l + > Ug.lfnd,
0%e pEP(c) qeQ(pp*)\{p,p*}
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Discretization

DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

Entropic semi-discrete equation

@ Fundamental assumption PU=PU
@ The use of variational formulations and Piola condition leads to

/p%%?dvz (P—Pr)(Uy~U).GNaS,
Qc

where 7 is the specific entropy and 6 the absolute temperature defined by
means of the Gibbs identity

Entropic semi-discrete equation

@ A sufficient condition to satisfy / o° 9‘3—? dvV>0is
Qc

GN

P—P,=-Z(U-U). ||GN||

Z(U—Uh).n,

where Z > 0 has the physical dimension of a density times a velocity
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Discretization

DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

Subcell forces definitions

A Y - o
® Flo = Poo o' Mo + Pic Ing'mgd and Fl, = Py e

j™ moment of the control point subcell forces

@ Theuseof P=P¢—Z (U-Uf).n tocalculate Fl,. and F), leads to
Flr;c = Pﬁ(Xp, t) /;jzcnl;.ac - M’bc (Up— U,C7(Xp, t)),
Foe = PA(Xq,1) laohlae — Mo (Ug — U3 (Xo, 1)),

i 7 (ind om0 4 it g pto iz o
Mo = Ze (oo’ mpe’ @ mpe” + /el @ ni®)  and Mo = Z oo @

o

Momentum and total energy conservation

© > Fp,=0 and F) +Fir=0
ceC(p)
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Discretization
Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

Nodal veIocHy

o MP UP = Z [Ph(XP7 )lgcnpc + Mgc Ufl(xpa t)]!
ceC(p)

where M, = > MY, isa positive definite matrix
ceC(p)

Face control point velocity

Z, U5(Xq) + Za uﬁ(xq>>  PR(Xg) = Ph(Xq) 1

® Mg Ug = Mg ( 7+ Zn Z + Zn L

0 _ 1 0 _ 0 0 0 . g = = =
where Mg = z Mgr = z Mg = Iy g, ® ng, is positive semi-definite

1D approximate Riemann problem solution
o (Uy.m))— (zL UL(Xq) + Zr u,’j’(xq)) o _ PRXg) - P(Xo)

Z + Zg at Z + Zg
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Discretization

DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

Tangential component of the face control point velocity

Z UK(X,) + Zr UR(X
o(Uq.tgL):< L Uk( 2+Z’; h ")>.tgL

Face control point velocity

_4 Ui(Xq) + Zr U (Xq) _ P(Xq) - Pf%(XQ)nO
Z+2Zg ZL+ 2R ot

° U,

Deformation tensor

d .
] d—tF, = ZUQ@V)(/\’Q

Qe Q(i)

Interior points velocity

® Ug = Uj(Xo,t)
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DG general framework Defor on grad tensor Discretization Control pc Limitation Initial deformation

Riemann invariants dlfferentlals Mean value linearization

@ doy=dU.t Oafhzuﬁ t
Oda_:d(%)—édu.n 904511—( )h_juh'n
—qr1 1
°da{"{‘_d(p)—i_padulr, °Oé+h (p)h-i-zich,.n
_ 1
OdaE—dE—U.dU-i-Pd(;) OaEvh:Eﬁiug_UerPg(%)g
a denotes the sound speed where Z; = a§p§

System variables polynomial approximation components
° (1)f=3(a%k+0a2))

° Uk_% o(a ik—ai )n—i—oszt

© Ef =af, + 3Z:(aS , —a JU§.n+af Ug.t—1PS(aS , +aC )

Unit direction ensuring symmetry preservation

Us Us
= and t=e,x ——
4 A
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Discretization

DG general framework Deformation gradient tensor Discretization Control point solvers Limitation Initial deformation

Composed derivatives

® Fr=Vx®r(X,,1)
= qu’H(X, t) ¢} VX <I’0(X,) Dy(X,t)

:FHFO r /

o JT(Xr, t) = n./,l-/()(7 t) Jo(X,)

Mass conservation k//

o po Jo = pJT (X, 1)

Modification of the mass matrix

d
°/P af ojd Z 7’Z}k/ p° JoojoxdQ"  time rate of change of

successive moments of functlon )

@ New definitions of mass matrix, of mass averaged value and of the
associated scalar product
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merical results

Second-order scheme Third-orde

e Numerical results
@ Second-order scheme
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Numerical results

Second-order scheme Third-order

‘ ‘ ‘ ‘ ‘ Sohon
6L ondorder o
sl |
alk |
ol |
alt |
Wl
. ‘ . : : :
0.4 . § 0 0.2 04 0.6 0.8 1 12 14
(a) Second-order scheme. (b) Density profile.
Figure: Point blast Sedov problem on a Cartesian grid made of 30 x 30 cells: density.
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Second-order scheme

Numerical results

Sedov point blast problem on unstructured grids
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(b) Triangular grid.

Figure: Unstructured initial grids for the point blast Sedov problem.
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Numerical results

Second-order scheme Third-order

Sedov point blast problem a polygonal grid

T
solution
2ndorder o

0.4 0.6 .4 B 0 0.2 0.4 0.6 0.8 1 12 14

(a) Second-order scheme. (b) Density profile.

Figure: Point blast Sedov problem on an unstructured grid made of 775 polygonal
cells: density map.
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Numerical results

rder scheme Third-order s

a triangular grid

solition
6L N 2ndorder o
gL |
alt |
ol |
all |
all |
0 : : : :
0.4 0.6 .4 0 0.2 0.4 0.6 0.8 1 12 14
(a) Second-order scheme. (b) Density profile.
Figure: Point blast Sedov problem on an unstructured grid made of 1100 triangular
cells: density map.
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Numerical results

Second-order scheme

Third-order scheme

Noh problem

T
exact solution
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(a) Second-order scheme. (b) Density profile.

Figure: Noh problem on a Cartesian grid made of 50 x 50 cells: density.
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Numerical results
Second-order scheme Third-order

Taylor-Green vortex problem, introduced by R. Rieben (LL

1 1
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00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) Second-order scheme. (b) Exact solution.
Figure: Motion of a 10 x 10 Cartesian mesh through a T.-G. vortex, at t = 0.75.
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Numerical results

Second-order scheme Third-order scheme

Taylor-Green vortex problem

L Ly | Lo | L |
h] ER o || EL [a, || B |4
& || 5.06E-3 [ 1.94 || 6.16E-3 | 1.93 || 2.20E-2 | 1.84
~ || 1.32E-3 [ 1.98 || 1.62E-3 | 1.97 || 5.91E-3 | 1.95
26 || 3.33E-4 [ 1.99 | 412E-4 [ 1.99 | 1.53E-3 | 1.98
a5 || 8-35E-5 [ 2.00 || 1.04E-4 | 2.00 | 3.86E-4 | 1.99
o5 | 2.09E-55| - [[2.60E-5] - [ 9.69E-5[ -

Table: Rate of convergence computed on the pressure at time t = 0.1.
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e Numerical results

@ Third-order scheme
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Numerical results

Second-order scheme Third-order scheme

Symmetry preservation

E Ho4

)

-
m}}}}}\\ \\‘\mmm\l\}l \}\\\\

0 0
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

(a) First-order scheme. (b) Second-order scheme.

Figure: Sod shock tube problem on a polar grid made of 100 x 3 non-uniform cells.

September 3rd, 2013 Francois Vilar High-order Cell-Centered DG scheme 33/46




Numerical results

Second-order scheme Third-order scheme

Symmetry preservation

11 T

solution
3rdorder  ®

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

(a) Density map. (b) Density profile.

Figure: Third-order DG solution for a Sod shock tube problem on a polar grid made of
100 x 3 non-uniform cells.
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Numerical results

Third-order scheme

11 T T T T

solution
3rdorder o

0.4 05 0.6 0.7 0.8 0.9 1

(a) Density map. (b) Density profile.

Figure: Third-order DG solution for a Sod shock tube problem on a polar grid made of
100 x 1 cells.
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(a) First-order scheme. (b) Second-order scheme.

Figure: Motion of a polar grid defined in polar coordinates by (r, 6) € [0, 1] x [0, 2x],
with 40 x 18 cells at t = 1: zoom on the zone (r, 6) € [0,0.5] x [0, 2x].




(b) Exact solution.

Figure: Motion of a polar grid defined in polar coordinates by (r, 6) € [0, 1] x [0, 2x],
with 40 x 18 cells at t = 1: zoom on the zone (r, 6) € [0,0.5] x [0, 2x].




Numerical results

Second-order scheme Third-order scheme

3rd order ---e-

L
06

(a) Pressure profile. (b) Velocity profile.

0.4 06 08 1

Figure: Gresho variant problem on a polar grid defined in polar coordinates by
(r,6) € [0,1] x [0, 2], with 40 x 18 cellsat { = 1.
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Numerical results
Second-order scheme Third-order scheme

Variant of the Gresho vortex problem

o0 ' solution
; . 1st order e
M 2nd order
1.05 [ . Srdlorder e
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0.97 . . . .
0 0.2 04 0.6 0.8 1

Figure: Gresho variant problem on a polar grid defined in polar coordinates by
(r,0) € [0,1] x [0, 27], with 40 x 18 cells at t = 1: density profile.
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Numerical results

Third-order scheme

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

(a) Attime t = 0. (b) Attime t = 0.97.

Figure: Third-order DG solution for a Kidder isentropic compression problem on a
polar grid made of 10 x 3 cells: pressure map.
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Numerical results

Second-order scheme Third-order scheme

Kidder isentropic compression
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Figure: Third-order DG solution for a Kidder isentropic compression problem on a
polar grid made of 10 x 3 cells: density profile.
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Numerical results

Second-order scheme Third-order scheme

Taylor-Green vortex problem
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(a) Third-order scheme. (b) Exact solution.
Figure: Motion of a 10 x 10 Cartesian mesh through a T.-G. vortex, at t = 0.75.
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Numerical results

Second-order scheme Third-order scheme

Taylor-Green vortex problem

L Ly [ Lo [ Lo |

h | E |4, El, |a, | E la

11—0 2.67E-4 | 2.96 || 3.36E-4 | 2.94 || 1.21E-3 | 2.86

% 3.43E-5 | 2.97 || 4.36E-5 | 2.96 || 1.66E-4 | 2.93

4l0 4.37E-6 | 2.99 || 5.59E-6 | 2.98 || 2.18E-5 | 2.96
& 5.50E-7 | 2.99 || 7.06E-7 | 2.99 || 2.80E-6 | 2.99

o5 | 6.91E-8 | - | 887E-8| - | 353E-7[ -

Table: Rate of convergence computed on the pressure at time t = 0.1.
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Numerical results

Second-order scheme Third-order scheme

Taylor-Green vortex problem

D.O.F N E} E} Ef time (sec)
600 | 24 x 25 || 2.67E-2 | 3.31E-2 | 8.55E-2 2.01
2400 | 48 x50 || 1.36E-2 | 1.69E-2 | 4.37E-2 11.0

Table: First-order DG scheme at time t = 0.1.

D.O.F N E] E Ef time (sec)
630 | 14 x 15 || 2.76E-3 | 3.33E-3 | 1.07E-2 2.77
2436 | 28 x 29 || 7.52E-4 | 9.02E-4 | 2.73E-3 11.3

Table: Second-order DG scheme without limitation at time t = 0.1.

D.O.F N E E Ei time (sec)
600 | 10 x 10 || 2.67E-4 | 3.36E-4 | 1.21E-3 4.00
2400 | 20 x 20 || 3.43E-5 | 4.36E-5 | 1.66E-4 30.6

Table: Third-order DG scheme without limitation at time t = 0.1.
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Numerical results

Third-order scheme

Solution

6 3rdorder o 4
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(a) Third-order scheme. (b) Density profile.

Figure: Point blast Sedov problem on a Cartesian grid made of 30 x 30 cells: density.
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Conclusions

@ Development of 2nd and 3rd order DG schemes for the 2D gas dynamics
system in a total Lagrangian formalism

@ GCL and Piola compatibility condition ensured by construction

@ Dramatic improvement of symmetry preservation by means of
third-order DG scheme

@ Riemann invariants limitation

@ High-order limitation

@ Positivity preserving limitation
o WENO limiter

@ Code parallelization

@ Development of a 3rd order DG scheme on moving mesh
@ Extension to 3D

@ Extension to ALE and solid dynamics
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Conclusion

@ F. VILAR, P.-H. MAIRE AND R. ABGRALL, Cell-centered discontinuous
Galerkin discretizations for two-dimensional scalar conservation laws on
unstructured grids and for one-dimensional Lagrangian hydrodynamics.
Computers and Fluids, 2010.

[@ F. VILAR, Cell-centered discontinuous Galerkin discretization for
two-dimensional Lagrangian hydrodynamics. Computers and Fluids,
2012.

@ F. VILAR, P.-H. MAIRE AND R. ABGRALL, Third order Cell-Centered DG
scheme for Lagrangian hydrodynamics on general unstructured Bezier
grids. Article in preparation.
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