High-order cell-centered DG scheme for Lagrangian hydrodynamics

F. Vilar¹, P.- H. Maire², R. Abgrall³

¹Brown University, Division of Applied Mathematics 182 George Street, Providence, RI 02912

²CEA CESTA, BP 2, 33 114 Le Barp, France

³INRIA and University of Bordeaux, Team Bacchus, 351 Cours de la Libération, 33 405 Talence Cedex, France

- Introduction
- Cell-Centered Lagrangian schemes
- Lagrangian and Eulerian descriptions
- Discretization
- Numerical results
- Conclusion

- Introduction
- Cell-Centered Lagrangian schemes
- Lagrangian and Eulerian descriptions
- Discretization
- Numerical results
- Conclusion

Introduction Cell-Centered Lagrangian schemes Lagrangian and Eulerian descriptions Discretization Numerical results Conclusion

Discontinuous Galerkin schemes Lagrangian and Eulerian descriptions Discretization Numerical results Conclusion

DG schemes

- Natural extension of Finite Volume method
- Piecewise polynomial approximation of the solution in the cells
- High-order scheme to achieve high accuracy

Procedure

- Local variational formulation
- Choice of the numerical fluxes (global L² stability, entropy inequality)
- Time discretization TVD multistep Runge-Kutta
 - C.-W. Shu, Discontinuous Galerkin methods: General approach and stability. 2008.
- Limitation vertex-based hierarchical slope limiters
 - D. Kuzmin, *A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods.* J. Comp. Appl. Math., 2009.

Circular polar grid: 10×1 cells

Taylor-Green exact motion

3/46

V. DOBREV, T. ELLIS, T. KOLEV AND R. RIEBEN, *High Order Curvilinear Finite Elements for Lagrangian Hydrodynamics. Part I: General Framework*, 2010. Presentation available at https://computation.llnl.gov/casc/blast/blast.html

- Introduction
- Cell-Centered Lagrangian schemes
- Lagrangian and Eulerian descriptions
- Discretization
- Numerical results
- 6 Conclusion

Finite volume schemes on moving mesh

- J. K. Dukowicz: CAVEAT scheme
 A computer code for fluid dynamics problems with large distorsion and internal slip, 1986
- B. Després: GLACE scheme Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems, 2005
- P.-H. Maire: EUCCLHYD scheme
 A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, 2007
- G. Kluth: Hyperelasticity
 Discretization of hyperelasticity with a cell-centered Lagrangian scheme, 2010
- S. Del Pino: Curvilinear Finite Volume method
 A curvilinear finite-volume method to solve compressible gas dynamics in semi-Lagrangian coordinates, 2010
- P. Hoch: Finite Volume method on unstructured conical meshes Extension of ALE methodology to unstructured conical meshes, 2011

DG scheme on initial mesh

R. Loubère: DG scheme for Lagrangian hydrodynamics
 A Lagrangian Discontinuous Galerkin-type method on unstructured meshes to solve hydrodynamics problems, 2004

- Introduction
- Cell-Centered Lagrangian schemes
- 3 Lagrangian and Eulerian descriptions
- 4 Discretization
- Numerical results
- 6 Conclusion

Flow transformation of the fluid

 The fluid flow is described mathematically by the continuous transformation, Φ , so-called mapping such as $\Phi: \mathbf{X} \longrightarrow \mathbf{x} = \Phi(\mathbf{X}, t)$

Figure: Notation for the flow map.

where \boldsymbol{X} is the Lagrangian (initial) coordinate, \boldsymbol{x} the Eulerian (actual) coordinate, N the Lagrangian normal and n the Eulerian normal

Deformation Jacobian matrix: deformation gradient tensor

•
$$F = \nabla_X \Phi = \frac{\partial X}{\partial X}$$
 and $J = \det F > 0$

September 3rd, 2013 François Vilar 5/46

6/46

Trajectory equation

$$\bullet \ \frac{\mathrm{d}\,\boldsymbol{x}}{\mathrm{d}\,t} = \boldsymbol{U}(\boldsymbol{x},t), \quad \boldsymbol{x}(\boldsymbol{X},0) = \boldsymbol{X}$$

Material time derivative

$$\bullet$$
 $\frac{\mathrm{d}}{\mathrm{d}t}f(\boldsymbol{x},t) = \frac{\partial}{\partial t}f(\boldsymbol{x},t) + \boldsymbol{U} \cdot \nabla_{\boldsymbol{x}}f(\boldsymbol{x},t)$

Transformation formulas

• $\operatorname{Fd} X = \operatorname{d} x$ Change of shape of infinitesimal vectors

• $\rho^0 = \rho J$ Mass conservation

• J dV = dv Measure of the volume change

• $JF^{-t}NdS = nds$ Nanson formula

Differential operators transformations

• $\nabla_X P = \frac{1}{J} \nabla_X \cdot (P J F^{-t})$ Gradient operator

• $\nabla_X \cdot \boldsymbol{U} = \frac{1}{7} \nabla_X \cdot (JF^{-1}\boldsymbol{U})$ Divergence operator

Piola compatibility condition

• $\nabla_X \cdot G = \mathbf{0}$, where $G = JF^{-t}$ is the cofactor matrix of F

$$\int_{\Omega} \nabla_{x} \cdot G \, \mathrm{d}V = \int_{\partial \Omega} G \, \mathbf{N} \, \mathrm{d}S = \int_{\partial \omega} \mathbf{n} \, \mathrm{d}s = \mathbf{0}$$

Gas dynamics system written in its total Lagrangian form

 $\bullet \ \frac{\mathrm{d}\,\mathsf{F}}{\mathrm{d}t} - \nabla_X \boldsymbol{U} = 0$

Deformation gradient tensor equation

 $oldsymbol{
ho}
ho^0 rac{\mathrm{d}}{\mathrm{d}t} (rac{1}{
ho}) -
abla_X \cdot (\mathsf{G}^{\mathrm{t}} oldsymbol{U}) = 0$

Specific volume equation

Momentum equation

Total energy equation

Thermodynamical closure

• EOS: $P = P(\rho, \varepsilon)$ where $\varepsilon = E - \frac{1}{2}U^2$

- Introduction
- Cell-Centered Lagrangian schemes
- Lagrangian and Eulerian descriptions
- Discretization
- Numerical results
- Conclusion

$(s+1)^{th}$ order DG discretization

- Let $\{\Omega_c\}_c$ be a partition of the domain Ω into polygonal cells
- $\{\sigma_k^c\}_{k=0...K}$ basis of $\mathbb{P}^s(\Omega_c)$, where $K+1=\frac{(s+1)(s+2)}{2}$
- $\phi_h^c(\mathbf{X}, t) = \sum_{k=0}^K \phi_k^c(t) \sigma_k^c(\mathbf{X})$ approximate function of $\phi(\mathbf{X}, t)$ on Ω_c

Definitions

- Center of mass $\mathcal{X}_c = (\mathcal{X}_c, \mathcal{Y}_c)^{\text{t}} = \frac{1}{m_c} \int_{\Omega_c} \rho^0(\mathbf{X}) \, \mathbf{X} \, \mathrm{d}V$, where m_c is the constant mass of the cell Ω_c
- The mean value $\langle \phi \rangle_c = \frac{1}{m_c} \int_{\Omega_c} \rho^0(\boldsymbol{X}) \, \phi(\boldsymbol{X}) \, \mathrm{d} \boldsymbol{V}$ of the function ϕ over the cell Ω_c
- The associated scalar product $(\phi \cdot \psi)_c = \int_{\Omega_c} \rho^0(\mathbf{X}) \, \phi(\mathbf{X}) \, \psi(\mathbf{X}) \, \mathrm{d}V$

Taylor expansion on the cell, located at the center of mass

$$\phi(\boldsymbol{X}) = \phi(\boldsymbol{\mathcal{X}}_c) + \sum_{k=1}^{s} \sum_{j=0}^{k} \frac{(\boldsymbol{X} - \boldsymbol{\mathcal{X}}_c)^{k-j} (\boldsymbol{Y} - \boldsymbol{\mathcal{Y}}_c)^j}{j!(k-j)!} \frac{\partial^k \phi}{\partial \boldsymbol{X}^{k-j} \partial \boldsymbol{Y}^j} (\boldsymbol{\mathcal{X}}_c) + o(\|\boldsymbol{X} - \boldsymbol{\mathcal{X}}_c\|^s)$$

$(s+1)^{th}$ order scheme polynomial Taylor basis

The first-order polynomial component and the associated basis function

$$\phi_0^c = \langle \phi \rangle_c$$
 and $\sigma_0^c = 1$

ullet The $k^{ ext{th}}$ -order polynomial components and the associated basis functions

$$\begin{split} \phi^{c}_{\frac{k(k+1)}{2}+j} &= (\Delta X_{c})^{k-j} (\Delta Y_{c})^{j} \frac{\partial^{k} \phi}{\partial X^{k-j} \partial Y^{j}} (\mathcal{X}_{c}), \\ \sigma^{c}_{\frac{k(k+1)}{2}+j} &= \frac{1}{j!(k-j)!} \left[\left(\frac{X - \mathcal{X}_{c}}{\Delta X_{c}} \right)^{k-j} \left(\frac{Y - \mathcal{Y}_{c}}{\Delta Y_{c}} \right)^{j} - \left\langle \left(\frac{X - \mathcal{X}_{c}}{\Delta X_{c}} \right)^{k-j} \left(\frac{Y - \mathcal{Y}_{c}}{\Delta Y_{c}} \right)^{j} \right\rangle_{c} \right], \end{split}$$

where $0 < k \le s, j = 0 \dots k, \, \Delta X_{c} = rac{X_{max} - X_{min}}{2}$ and $\Delta Y_{c} = rac{Y_{max} - Y_{min}}{2}$

H. Luo, J. D. Baum and R. Löhner, *A DG method based on a Taylor basis for the compressible flows on arbitrary grids.* J. Comp. Phys., 2008.

Outcome

• First moment associated to the basis function $\sigma_0^c = 1$ is the mass averaged value

$$\phi_0^c = \langle \phi \rangle_c$$

 The successive moments can be identified as the successive derivatives of the function expressed at the center of mass of the cell

$$\phi_{\frac{k(k+1)}{2}+j}^{c} = (\Delta X_{c})^{k-j} (\Delta Y_{c})^{j} \frac{\partial^{k} \phi}{\partial X^{k-j} \partial Y^{j}} (\mathcal{X}_{c})$$

The first basis function is orthogonal to the other ones

$$(\sigma_0^c \cdot \sigma_k^c)_c = m_c \delta_{0k}$$

 Same basis functions regardless the shape of the cells (squares, triangles, generic polygonal cells)

Lagrangian gas dynamics equation type

• $\rho^0 \frac{\mathrm{d} \phi}{\mathrm{d} t} + \nabla_X \cdot (\mathsf{G}^t f) = 0$, where f is the flux function $\mathsf{G} = J\mathsf{F}^{-t}$ is the cofactor matrix of F

Local variational formulations

Geometric Conservation Law (GCL)

Equation on the first moment of the specific volume

$$\int_{\Omega_c} \frac{\mathrm{d}\, J}{\mathrm{d}t} \, \mathrm{d}V = \frac{\mathrm{d}\, |\omega_c|}{\mathrm{d}t} = \int_{\Omega_c} \nabla_X \, \boldsymbol{.} \, (\mathsf{G}^t \, \boldsymbol{\mathit{U}}) \, \mathrm{d}V = \int_{\partial\Omega_c} \overline{\boldsymbol{\mathit{U}}} \, \boldsymbol{.} \, \mathsf{G} \boldsymbol{\mathit{N}} \mathrm{d}S$$

Mass matrix properties

- $\int_{\Omega_c} \rho^0 \sigma_j^c \sigma_k^c \, \mathrm{d}V = \left(\sigma_j^c \cdot \sigma_k^c\right)_c$ generic coefficient of the symmetric positive definite mass matrix
- $(\sigma_0^c \cdot \sigma_k^c)_c = m_c \, \delta_{0k}$ mass averaged equation is independent of the other polynomial basis components equations

Interior terms

• $\int_{\Omega_c} \mathbf{f} \cdot \mathbf{G} \, \nabla_X \sigma_j^c \, \mathrm{d}V$ is evaluated through the use of a two-dimensional high-order quadrature rule

Boundary terms

- $\int_{\partial \Omega_c} \bar{\mathbf{f}} \cdot \sigma_j^c \, \mathbf{G} \mathbf{N} dS$ required a specific treatment to ensure the GCL
- It remains to determine the numerical fluxes

Requirements

- Consistency of vector GNdS = nds at the interfaces of the cells
- Continuity of vector GN at cell interfaces on both sides of the interface
- Preservation of uniform flows, $G = JF^{-t}$ the cofactor matrix

$$\int_{\Omega_c} \mathsf{G} \boldsymbol{\nabla}_X \sigma_j^c \, \mathrm{d}V = \int_{\partial\Omega_c} \sigma_j^c \, \mathsf{G} \boldsymbol{N} \mathrm{d}S \quad \Longleftrightarrow \quad \int_{\Omega_c} \sigma_j^c \, (\nabla_X \boldsymbol{.} \, \mathsf{G}) \, \, \mathrm{d}V = \boldsymbol{0}$$

Generalization of the weak form of the Piola compatibility condition

Tensor F discretization

- Discretization of tensor F by means of a mapping defined on triangular cells
- Partition of the polygonal cells in the initial configuration into non-overlapping triangles

$$\Omega_c = \bigcup_{i=1}^{ntri} \mathcal{T}_i^c$$

$(s+1)^{ ext{th}}$ order continuous mapping function

• We develop Φ on the Finite Elements basis functions Λ_q^i in \mathcal{T}_i of degree s

$$\Phi_h^i(\boldsymbol{X},t) = \sum_{q \in \mathcal{Q}(i)} \Lambda_q^i(\boldsymbol{X}) \; \Phi_q(t),$$

where Q(i) is the T_i control points set, including the vertices $\{p^-, p, p^+\}$

- $\bullet \ \Phi_q(t) = \Phi(\boldsymbol{X}_q, t) = \boldsymbol{X}_q$
- $\bullet \ \frac{\mathrm{d}\,\Phi_q}{\mathrm{d}t} = \boldsymbol{U}_q \Longrightarrow \frac{\mathrm{d}}{\mathrm{d}t}\mathsf{F}_i(\boldsymbol{X},t) = \sum_{q\in\mathcal{Q}(i)}\boldsymbol{U}_q(t)\otimes\nabla_X \Lambda_q^i(\boldsymbol{X})$

G. KLUTH AND B. DESPRÉS, *Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme.* J. Comp. Phys., 2010.

Outcome

- Satisfaction of the Piola compatibility condition everywhere
- Consistency and continuity of the Eulerian normal GN

Example of the fluid flow mapping in the fourth order case

Figure: Nodes arrangement for a cubic Lagrange Finite Element mapping.

Curved edges definition using s + 1 control points

ullet Projection of the continuous mapping function Φ on the face $f_{
ho
ho^+}$

$$\mathbf{X}_{|_{\rho\rho^+}}(\zeta) = \mathbf{X}_{\rho}\lambda_{\rho}(\zeta) + \sum_{q\in\mathcal{Q}(\rho\rho^+)\setminus\{\rho,\rho^+\}} \mathbf{X}_{q}\lambda_{q}(\zeta) + \mathbf{X}_{\rho^+}\lambda_{\rho^+}(\zeta),$$

15/46

where $\mathcal{Q}(pp^+)$ is the face control points set, $\zeta \in [0,1]$ the curvilinear abscissa and λ_a the 1D Finite Element basis functions of degree s

Local variational formulations

Polynomial assumptions on face f_{pp^+}

$$\bullet \ \mathbf{f}_{|_{pp^+}}(\zeta) = \mathbf{f}_{pc}^+ \lambda_p(\zeta) + \sum_{q \setminus \{p,p^+\}} \mathbf{f}_{qc} \lambda_q(\zeta) + \mathbf{f}_{p^+c}^- \lambda_{p^+}(\zeta)$$

Polynomial properties on face f_{pp^+}

$$\bullet \ \ \mathsf{G} \ \mathbf{N} \, \mathrm{d} L_{|_{\rho\rho^+}}(\zeta) = \mathbf{n} \, \mathrm{d} I_{|_{\rho\rho^+}} = \frac{\partial \mathbf{x}}{\partial \zeta} \mathrm{d} \zeta_{|_{\rho\rho^+}} \times \mathbf{e}_{\mathsf{Z}} = \sum_q \frac{\partial \lambda_q}{\partial \zeta} (\zeta) \ (\mathbf{x}_q \times \mathbf{e}_{\mathsf{Z}})$$

•
$$\sigma_{j|_{\rho\rho^{+}}}^{c}(\zeta) = \sigma_{j}^{c}(\boldsymbol{X}_{\rho})\lambda_{\rho}(\zeta) + \sum_{q\setminus\{p,p^{+}\}} \sigma_{j}^{c}(\boldsymbol{X}_{q})\lambda_{q}(\zeta) + \sigma_{j}^{c}(\boldsymbol{X}_{\rho^{+}})\lambda_{\rho^{+}}(\zeta)$$

Fundamental assumptions

- $m{m{\bullet}} \; m{U}_{pc}^{\pm} = m{U}_p, \;\; orall c \in \mathcal{C}(p) \;\;\; ext{and} \;\; m{U}_{qL} = m{U}_{qR} = m{U}_q$
- $ullet \ \overline{P} \overline{m{U}} = \overline{P} \ \overline{m{U}} \quad \Longrightarrow \quad (P m{U})_{pc}^{\pm} = P_{pc}^{\pm} \ m{U}_p \quad ext{and} \quad (P m{U})_{qc} = P_{qc} \ m{U}_q$

Procedure

Analytical integration + index permutation

Weighted control point normals

•
$$I_{pc}^{+,j} \boldsymbol{n}_{pc}^{+,j} = \left(\int_0^1 \lambda_{p|_{pp^+}}(\zeta) \sigma_{j|_{pp^+}}(\zeta) \frac{\partial \boldsymbol{x}}{\partial \zeta} \mathrm{d}\zeta|_{pp^+} \right) \times \boldsymbol{e}_{\boldsymbol{z}}$$

•
$$I_{\rho c}^{-,j} \boldsymbol{n}_{\rho c}^{-,j} = \left(\int_0^1 \lambda_{\rho|_{\rho-\rho}}(\zeta) \sigma_{j|_{\rho-\rho}}(\zeta) \frac{\partial \boldsymbol{x}}{\partial \zeta} \mathrm{d}\zeta_{|_{\rho-\rho}} \right) \times \boldsymbol{e}_z$$

•
$$l_{pc}^{j} \mathbf{n}_{pc}^{j} = l_{pc}^{-,j} \mathbf{n}_{pc}^{-,j} + l_{pc}^{+,j} \mathbf{n}_{pc}^{+,j}$$

•
$$I_{qc}^{j} \mathbf{n}_{qc}^{j} = \left(\int_{0}^{1} \lambda_{q|_{pp^{+}}}(\zeta) \sigma_{j|_{pp^{+}}}(\zeta) \frac{\partial \mathbf{x}}{\partial \zeta} \mathrm{d}\zeta_{|_{pp^{+}}} \right) \times \mathbf{e}_{z}$$

jth moment of the subcell forces

•
$$\mathbf{F}_{pc}^{j} = P_{pc}^{-} I_{pc}^{-,j} \mathbf{n}_{pc}^{-,j} + P_{pc}^{+} I_{pc}^{+,j} \mathbf{n}_{pc}^{+,j}$$
 and $\mathbf{F}_{qc}^{j} = P_{qc} I_{qc}^{j} \mathbf{n}_{qc}^{j}$

Semi-discrete equations GCL compatible

$$\int_{\Omega_c} \rho^0 \frac{\mathrm{d}}{\mathrm{d}t} (\frac{1}{\rho}) \sigma_j^c \, \mathrm{d}V = -\sum_{i=1}^{ntri} \int_{\mathcal{T}_i^c} \mathbf{U} \cdot \mathbf{G} \nabla_X \sigma_j^c \, \mathrm{d}V + \sum_{p \in \mathcal{P}(c)} \left(\mathbf{U}_p \cdot l_{pc}^j \mathbf{n}_{pc}^j + \sum_{q \setminus \{p,p^+\}} \mathbf{U}_q \cdot l_{qc}^j \mathbf{n}_{qc}^j \right)$$

$$\int_{\Omega_c} \rho^0 \frac{\mathrm{d} \, \boldsymbol{U}}{\mathrm{d} t} \sigma_j^c \, \mathrm{d} V = \sum_{i=1}^{ntri} \int_{\mathcal{T}_i^c} PG \nabla_X \sigma_j^c \mathrm{d} V - \sum_{p \in \mathcal{P}(c)} \left(\boldsymbol{F}_{pc}^j + \sum_{q \setminus \{p, p^+\}} \boldsymbol{F}_{qc}^j \right)$$

$$\int_{\Omega_c} \rho^0 \frac{\mathrm{d} E}{\mathrm{d} t} \sigma_j^c \, \mathrm{d} V = \sum_{i=1}^{ntri} \int_{\mathcal{T}_i^c} P \mathbf{U} \cdot G \nabla_X \sigma_j^c \, \mathrm{d} V - \sum_{p \in \mathcal{P}(c)} \left(\mathbf{U}_p \cdot \mathbf{F}_{pc}^j + \sum_{q \setminus \{p, p^+\}} \mathbf{U}_q \cdot \mathbf{F}_{qc}^j \right)$$

Equation on the first moment of the specific volume

$$\bullet \ \frac{\mathrm{d} \left| \omega_c \right|}{\mathrm{d} t} = \int_{\partial \Omega_c} \overline{\boldsymbol{U}} \cdot \mathsf{G} \boldsymbol{N} \mathrm{d} L = \sum_{\boldsymbol{\rho} \in \mathcal{P}(\boldsymbol{c})} \left(\boldsymbol{U}_{\boldsymbol{\rho}} \cdot l_{\boldsymbol{\rho}c}^0 \boldsymbol{n}_{\boldsymbol{\rho}c}^0 \right. \\ \left. + \sum_{\boldsymbol{q} \in \mathcal{Q}(\boldsymbol{\rho}\boldsymbol{\rho}^+) \setminus \{\boldsymbol{p}, \boldsymbol{\rho}^+\}} \boldsymbol{U}_{\boldsymbol{q}} \cdot l_{\boldsymbol{q}c}^0 \boldsymbol{n}_{\boldsymbol{q}c}^0 \right)$$

←□ → ←□ → ← = → = ← → へ○

Entropic semi-discrete equation

- Fundamental assumption $\overline{P}\overline{U} = \overline{P}\overline{U}$
- The use of variational formulations and Piola condition leads to

$$\int_{\Omega_c} \rho^0 \, \theta \frac{\mathrm{d} \, \eta}{\mathrm{d} t} \, \mathrm{d} V = \int_{\partial \Omega_c} (\overline{P} - P_h) (\boldsymbol{U}_h - \overline{\boldsymbol{U}}) \, . \, \mathsf{G} \boldsymbol{N} \mathrm{d} \boldsymbol{S},$$

where η is the specific entropy and θ the absolute temperature defined by means of the Gibbs identity

Entropic semi-discrete equation

• A sufficient condition to satisfy $\int_{\Omega_c}
ho^0 \, heta rac{\mathrm{d} \, \eta}{\mathrm{d} t} \, \mathrm{d} \, V \geq 0$ is

$$\overline{P} - P_h = -Z(\overline{U} - U_h) \cdot \frac{GN}{\|GN\|} = -Z(\overline{U} - U_h) \cdot n,$$

where $Z \ge 0$ has the physical dimension of a density times a velocity

Subcell forces definitions

$$\bullet \; \; {\pmb F}^j_{pc} = P^-_{pc} I^{-,j}_{pc} {\pmb n}^{-,j}_{pc} + P^+_{pc} I^{+,j}_{pc} {\pmb n}^{+,j}_{pc} \quad \text{and} \quad {\pmb F}^j_{qc} = P_{qc} I^j_{qc} {\pmb n}^j_{qc}$$

jth moment of the control point subcell forces

ullet The use of $\overline{P}=P^c_h-Z_c\,(\overline{m{U}}-m{U}^c_h)$. $m{n}$ to calculate $m{F}^j_{pc}$ and $m{F}^j_{qc}$ leads to

$$\boldsymbol{F}_{pc}^{j} = P_{h}^{c}(\boldsymbol{X}_{p},t) \, l_{pc}^{j} \boldsymbol{n}_{pc}^{j} - \mathsf{M}_{pc}^{j} \, (\boldsymbol{U}_{p} - \boldsymbol{U}_{h}^{c}(\boldsymbol{X}_{p},t)),$$

$$oldsymbol{F}_{qc}^{j} = P_{h}^{c}(oldsymbol{X}_{q},t)\,l_{qc}^{j}oldsymbol{n}_{qc}^{j} - \mathsf{M}_{qc}^{j}\,(oldsymbol{U}_{q} - oldsymbol{U}_{h}^{c}(oldsymbol{X}_{q},t)),$$

$$\mathsf{M}_{pc}^{j} = \mathsf{Z}_{c} \, \left(\mathit{I}_{pc}^{-,j} \, \bm{n}_{pc}^{-,j} \otimes \bm{n}_{pc}^{-,0} + \mathit{I}_{pc}^{+,j} \, \bm{n}_{pc}^{+,j} \otimes \bm{n}_{pc}^{+,0}
ight) \quad ext{and} \quad \mathsf{M}_{qc}^{j} = \mathsf{Z}_{c} \, \mathit{I}_{qc}^{j} \, \bm{n}_{qc}^{j} \otimes \bm{n}_{qc}^{0}$$

Momentum and total energy conservation

$$ullet \sum_{c \in \mathcal{C}(p)} oldsymbol{F}_{pc}^0 = oldsymbol{0} \quad ext{ and } \quad oldsymbol{F}_{qL}^0 + oldsymbol{F}_{qR}^0 = oldsymbol{0}$$

Nodal velocity

$$\bullet \ \textit{M}_{\textit{p}} \ \textit{\textbf{U}}_{\textit{p}} = \sum_{\textit{c} \in \mathcal{C}(\textit{p})} \left[\textit{P}_{\textit{h}}^{\textit{c}}(\textit{\textbf{X}}_{\textit{p}},t) \, \textit{I}_{\textit{pc}}^{\textit{0}} \textit{\textbf{n}}_{\textit{pc}}^{\textit{0}} + \textit{M}_{\textit{pc}}^{\textit{0}} \, \textit{\textbf{U}}_{\textit{h}}^{\textit{c}}(\textit{\textbf{X}}_{\textit{p}},t) \right],$$

where
$$\mathsf{M}_\mathsf{p} = \sum_{c \in \mathcal{C}(p)} \mathsf{M}_\mathit{pc}^0$$
 is a **positive definite** matrix

Face control point velocity

$$\bullet \ \mathsf{M}_q \ \boldsymbol{U}_q = \mathsf{M}_q \left(\frac{Z_L \ \boldsymbol{U}_h^L(\boldsymbol{X}_q) + Z_R \ \boldsymbol{U}_h^R(\boldsymbol{X}_q)}{Z_L + Z_R} \right) - \frac{P_h^R(\boldsymbol{X}_q) - P_h^L(\boldsymbol{X}_q)}{Z_L + Z_R} \ I_{qL}^0 \boldsymbol{\eta}_{qL}^0,$$

where $M_q = \frac{1}{Z_R} M_{qR}^0 = \frac{1}{Z_L} M_{qL}^0 = I_{qL}^0 \boldsymbol{n}_{qL}^0 \otimes \boldsymbol{n}_{qL}^0$ is positive semi-definite

1D approximate Riemann problem solution

$$\bullet \ (\mathbf{\textit{U}}_{q} \cdot \mathbf{\textit{n}}_{qL}^{0}) = \left(\frac{Z_{L} \, \mathbf{\textit{U}}_{h}^{L}(\mathbf{\textit{X}}_{q}) + Z_{R} \, \mathbf{\textit{U}}_{h}^{R}(\mathbf{\textit{X}}_{q})}{Z_{L} + Z_{R}}\right) \cdot \mathbf{\textit{n}}_{qL}^{0} - \frac{P_{h}^{R}(\mathbf{\textit{X}}_{q}) - P_{h}^{L}(\mathbf{\textit{X}}_{q})}{Z_{L} + Z_{R}}$$

Tangential component of the face control point velocity

$$\bullet \ (\textbf{\textit{U}}_{q} . \ \textbf{\textit{t}}_{qL}^{0}) = \left(\frac{Z_{L} \ \textbf{\textit{U}}_{h}^{L}(\textbf{\textit{X}}_{q}) + Z_{R} \ \textbf{\textit{U}}_{h}^{R}(\textbf{\textit{X}}_{q})}{Z_{L} + Z_{R}} \right) . \ \textbf{\textit{t}}_{qL}^{0}$$

Face control point velocity

•
$$\boldsymbol{U}_{q} = \frac{Z_{L} \, \boldsymbol{U}_{h}^{L}(\boldsymbol{X}_{q}) + Z_{R} \, \boldsymbol{U}_{h}^{R}(\boldsymbol{X}_{q})}{Z_{L} + Z_{R}} - \frac{P_{h}^{R}(\boldsymbol{X}_{q}) - P_{h}^{L}(\boldsymbol{X}_{q})}{Z_{L} + Z_{R}} \boldsymbol{n}_{qL}^{0}$$

Deformation tensor

$$\bullet \ \frac{\mathrm{d}}{\mathrm{d}t}\mathsf{F}_i = \sum_{Q \in \mathcal{Q}(i)} \boldsymbol{U}_Q \otimes \nabla_X \Lambda_Q^i$$

Interior points velocity

$$\bullet$$
 $\boldsymbol{U}_{O} = \boldsymbol{U}_{b}^{c}(\boldsymbol{X}_{O},t)$

Riemann invariants differentials

- $d\alpha_t = d\boldsymbol{U} \cdot \boldsymbol{t}$
- $d\alpha_{-} = d(\frac{1}{\rho}) \frac{1}{\rho a} dU \cdot n$
- ullet d $lpha_+=\mathrm{d}(rac{1}{
 ho})+rac{1}{
 ho a}\,\mathrm{d}oldsymbol{U}$. $oldsymbol{n}$
- $d\alpha_E = dE U \cdot dU + P d(\frac{1}{\rho})$

a denotes the sound speed

Mean value linearization

$$m{\circ}$$
 $lpha_{t,h}^c = m{U}_h^c$. $m{t}$

$$\bullet \ \alpha_{-,h}^c = (\frac{1}{\rho})_h^c - \frac{1}{Z_c} U_h^c$$
 . n

$$lpha_{+,h}^{c} = (rac{1}{
ho})_{h}^{c} + rac{1}{Z_{c}} U_{h}^{c}$$
 . n

•
$$\alpha_{E,h}^c = E_h^c - \boldsymbol{U}_0^c \cdot \boldsymbol{U}_h^c + P_0^c (\frac{1}{\rho})_h^c$$

where $Z_c = a_0^c \rho_0^c$

System variables polynomial approximation components

- $\bullet \left(\frac{1}{\rho}\right)_{k}^{c} = \frac{1}{2} \left(\alpha_{+,k}^{c} + \alpha_{-,k}^{c}\right)$
- $\mathbf{U}_{k}^{c} = \frac{1}{2} Z_{c} (\alpha_{+,k}^{c} \alpha_{-,k}^{c}) \mathbf{n} + \alpha_{t,k}^{c} \mathbf{t}$
- $E_k^c = \alpha_{E,k}^c + \frac{1}{2} Z_c (\alpha_{+,k}^c \alpha_{-,k}^c) U_0^c \cdot n + \alpha_{t,k}^c U_0^c \cdot t \frac{1}{2} P_0^c (\alpha_{+,k}^c + \alpha_{-,k}^c)$

Unit direction ensuring symmetry preservation

•
$$\mathbf{n} = \frac{\mathbf{U}_0^c}{\|\mathbf{U}_0^c\|}$$
 and $\mathbf{t} = \mathbf{e}_z \times \frac{\mathbf{U}_0^c}{\|\mathbf{U}_0^c\|}$

Composed derivatives

- $\bullet \mathsf{F}_{T} = \nabla_{X_{r}} \Phi_{T}(\mathbf{X}_{r}, t)$ $= \nabla_{X} \Phi_{H}(\mathbf{X}, t) \circ \nabla_{X_{r}} \Phi_{0}(\mathbf{X}_{r})$ $= \mathsf{F}_{H} \mathsf{F}_{0}$
- $J_T(X_r, t) = J_H(X, t) J_0(X_r)$

Mass conservation

•
$$\rho^0 J_0 = \rho J_T$$

Modification of the mass matrix

- $\int_{\omega_c} \rho \frac{\mathrm{d} \, \psi_h^c}{\mathrm{d} t} \, \sigma_j \, \mathrm{d}\omega = \sum_{k=0}^K \frac{\mathrm{d} \, \psi_k}{\mathrm{d} t} \, \int_{\Omega_c^r} \rho^0 \, J_0 \, \sigma_j \, \sigma_k \, \mathrm{d}\Omega^r$ time rate of change of successive moments of function ψ
- New definitions of mass matrix, of mass averaged value and of the associated scalar product

4□ > 4□ > 4 □ > 4 □ > 4 □ > 9 Q O

- Introduction
 - Discontinuous Galerkin schemes
 - High-order geometries
- Cell-Centered Lagrangian schemes
- Lagrangian and Eulerian descriptions
- Discretization
 - DG general framework
 - Deformation gradient tensor
 - Discretization
 - Control point solvers
 - Limitation
 - Initial deformation
- Numerical results
 - Second-order scheme
 - Third-order scheme
- Conclusion

Figure: Point blast Sedov problem on a Cartesian grid made of 30 × 30 cells: density.

Sedov point blast problem on unstructured grids

Figure: Unstructured initial grids for the point blast Sedov problem.

26/46

Figure: Point blast Sedov problem on an unstructured grid made of 775 polygonal cells: density map.

(ロ) (部) (注) (注) (注) の

Figure: Point blast Sedov problem on an unstructured grid made of 1100 triangular cells: density map.

4 D > 4 A > 4 B > 4 B > B = 990

28/46

Figure: Noh problem on a Cartesian grid made of 50×50 cells: density.

29/46

Taylor-Green vortex problem, introduced by R. Rieben (LLNL)

(a) Second-order scheme.

(b) Exact solution.

30/46

Figure: Motion of a 10 \times 10 Cartesian mesh through a T.-G. vortex, at t = 0.75.

Taylor-Green vortex problem

	<i>L</i> ₁		L ₂		L_{∞}	
h	$E_{L_1}^h$	$q_{L_1}^h$	$E_{L_2}^h$	$q_{L_2}^h$	$E_{L_{\infty}}^{h}$	$q_{L_{\infty}}^{h}$
1 10	5.06E-3	1.94	6.16E-3	1.93	2.20E-2	1.84
$\frac{1}{20}$	1.32E-3	1.98	1.62E-3	1.97	5.91E-3	1.95
$\frac{1}{40}$	3.33E-4	1.99	4.12E-4	1.99	1.53E-3	1.98
<u>1</u>	8.35E-5	2.00	1.04E-4	2.00	3.86E-4	1.99
160	2.09E-5	-	2.60E-5	-	9.69E-5	-

Table: Rate of convergence computed on the pressure at time t = 0.1.

- Introduction
 - Discontinuous Galerkin schemes
 - High-order geometries
- 2 Cell-Centered Lagrangian schemes
- Lagrangian and Eulerian descriptions
- Discretization
 - DG general framework
 - Deformation gradient tensor
 - Discretization
 - Control point solvers
 - Limitation
 - Initial deformation
- Numerical results
 - Second-order scheme
 - Third-order scheme
- Conclusion

Figure: Polar initial grids for the Sod shock tube problem.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 釣 ९ ○

Figure: Sod shock tube problem on a polar grid made of 100×3 non-uniform cells.

Figure: Third-order DG solution for a Sod shock tube problem on a polar grid made of 100×3 non-uniform cells.

September 3rd, 2013 François Vilar High-order Cell-Centered DG scheme 34/46

Figure: Third-order DG solution for a Sod shock tube problem on a polar grid made of 100×1 cells.

September 3rd, 2013 François Vilar High-order Cell-Centered DG scheme 35/46

Introduction Cell-Centered Lagrangian schemes Lagrangian and Eulerian descriptions Discretization Numerical results Conclusion Second-order scheme Lagrangian and Eulerian descriptions Discretization Numerical results Conclusion

Variant of the incompressible Gresho vortex problem

(a) First-order scheme.

(b) Second-order scheme.

Figure: Motion of a polar grid defined in polar coordinates by $(r, \theta) \in [0, 1] \times [0, 2\pi]$, with 40 × 18 cells at t = 1: zoom on the zone $(r, \theta) \in [0, 0.5] \times [0, 2\pi]$.

High-order Cell-Centered DG scheme

4 II > 4 II > 4 II > 4 II >

Introduction Cell-Centered Lagrangian schemes Lagrangian and Eulerian descriptions Discretization Numerical results Third-order scheme

Variant of the incompressible Gresho vortex problem

(a) Third-order scheme.

(b) Exact solution.

Figure: Motion of a polar grid defined in polar coordinates by $(r, \theta) \in [0, 1] \times [0, 2\pi]$, with 40 \times 18 cells at t=1: zoom on the zone $(r,\theta) \in [0,0.5] \times [0,2\pi]$.

Variant of the Gresho vortex problem

Figure: Gresho variant problem on a polar grid defined in polar coordinates by $(r, \theta) \in [0, 1] \times [0, 2\pi]$, with 40×18 cells at t = 1.

Variant of the Gresho vortex problem

Figure: Gresho variant problem on a polar grid defined in polar coordinates by $(r, \theta) \in [0, 1] \times [0, 2\pi]$, with 40 × 18 cells at t = 1: density profile.

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 夕久 ○

Figure: Third-order DG solution for a Kidder isentropic compression problem on a polar grid made of 10×3 cells: pressure map.

40/46

Kidder isentropic compression

Figure: Third-order DG solution for a Kidder isentropic compression problem on a polar grid made of 10×3 cells: density profile.

Introduction Cell-Centered Lagrangian schemes Lagrangian and Eulerian descriptions Discretization Numerical results Conclusion Second-order scheme

Taylor-Green vortex problem

(a) Third-order scheme.

(b) Exact solution.

Figure: Motion of a 10 \times 10 Cartesian mesh through a T.-G. vortex, at t=0.75.

Taylor-Green vortex problem

	<i>L</i> ₁		L ₂		L_{∞}	
h	$E_{L_1}^h$	$q_{L_1}^h$	$E_{L_2}^h$	$q_{L_2}^h$	$E_{L_{\infty}}^{h}$	$q_{L_{\infty}}^{h}$
1 10	2.67E-4	2.96	3.36E-4	2.94	1.21E-3	2.86
$\frac{1}{20}$	3.43E-5	2.97	4.36E-5	2.96	1.66E-4	2.93
$\frac{1}{40}$	4.37E-6	2.99	5.59E-6	2.98	2.18E-5	2.96
<u>1</u>	5.50E-7	2.99	7.06E-7	2.99	2.80E-6	2.99
160	6.91E-8	-	8.87E-8	-	3.53E-7	-

Table: Rate of convergence computed on the pressure at time t = 0.1.

Taylor-Green vortex problem

D.O.F	N	$E_{L_1}^h$	$\mathcal{E}_{L_2}^h$	$E_{L_{\infty}}^{h}$	time (sec)
600	24 × 25	2.67E-2	3.31E-2	8.55E-2	2.01
2400	48 × 50	1.36E-2	1.69E-2	4.37E-2	11.0

Table: First-order DG scheme at time t = 0.1.

D.O.F	N	$E_{L_1}^h$	$E_{L_2}^h$	$E^h_{L_\infty}$	time (sec)
630	14 × 15	2.76E-3	3.33E-3	1.07E-2	2.77
2436	28 × 29	7.52E-4	9.02E-4	2.73E-3	11.3

Table: Second-order DG scheme without limitation at time t = 0.1.

D.O.F	N	$E_{L_1}^h$	$E_{L_2}^h$	$E_{L_{\infty}}^{h}$	time (sec)
600	10 × 10	2.67E-4	3.36E-4	1.21E-3	4.00
2400	20 × 20	3.43E-5	4.36E-5	1.66E-4	30.6

Table: Third-order DG scheme without limitation at time t = 0.1.

Figure: Point blast Sedov problem on a Cartesian grid made of 30×30 cells: density.

45/46

- Introduction
- Cell-Centered Lagrangian schemes
- Lagrangian and Eulerian descriptions
- 4 Discretization
- Numerical results
- 6 Conclusion

Introduction Cell-Centered Lagrangian schemes Lagrangian and Eulerian descriptions Discretization Numerical results Conclusion

Conclusions

- Development of 2nd and 3rd order DG schemes for the 2D gas dynamics system in a total Lagrangian formalism
- GCL and Piola compatibility condition ensured by construction
- Dramatic improvement of symmetry preservation by means of third-order DG scheme
- Riemann invariants limitation

Perspectives

- High-order limitation
 - Positivity preserving limitation
 - WENO limiter
- Code parallelization
- Development of a 3rd order DG scheme on moving mesh
- Extension to 3D
- Extension to ALE and solid dynamics

- F. VILAR, P.-H. MAIRE AND R. ABGRALL, *Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics.* Computers and Fluids, 2010.
- F. VILAR, Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics. Computers and Fluids, 2012.
- F. VILAR, P.-H. MAIRE AND R. ABGRALL, Third order Cell-Centered DG scheme for Lagrangian hydrodynamics on general unstructured Bezier grids. Article in preparation.