Cell-centered discontinuous Galerkin scheme for Lagrangian hydrodynamics

F. Vilar¹, P. H. Maire¹, R. Abgrall²

¹CEA CESTA, BP 2, 33 114 Le Barp, France

²INRIA and University of Bordeaux, Team Bacchus, Institut de Mathématiques de Bordeaux, 351 Cours de la Libération, 33 405 Talence Cedex, France

September 2011

September 2011 François Vilar Cell-centered DG scheme 1/30

- Introduction
 - Discontinuous Galerkin (DG)
 - Scalar conservation laws
 - 1D Lagrangian hydrodynamics
- - References
 - System and equations
 - Geometric consideration

 - 2nd order DG scheme

- extension of finite volumes method
- polynomial approximation of the solution in the cells
- high order scheme, high precision
- local variational formulation
- choice of the numerical fluxes (global L² stability, entropic inequality)
- time discretization TVD multistep Runge-Kutta
 - C.-W. Shu. Discontinuous Galerkin methods: General approach and stability, 2008
- limitation vertex-based hierarchical slope limiters
 - D. Kuzmin, A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods J. Comp. Appl. Math., 2009

François Vilar Cell-centered DG scheme September 2011 2/30 scontinuous Galerkin (DG) Scalar conservation laws

- Introduction
 - Discontinuous Galerkin (DG)
 - Scalar conservation laws
 - 1D Lagrangian hydrodynamics
- 2 2D Lagrangian hydrodynamics
 - References
 - System and equations
 - Geometric consideration
 - 2nd order Deformation tensor
 - 2nd order DG scheme
- Conclusion

Introduction

comparison between the second order and the third order scheme with limitation

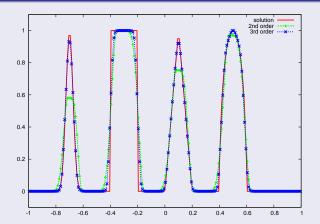
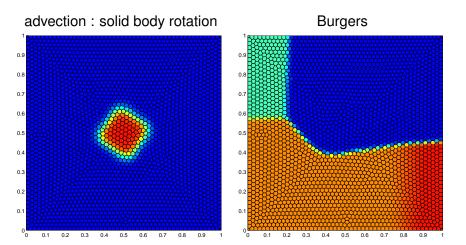


Figure: linear advection of a combination of smooth and discontinuous profiles

Cell-centered DG scheme September 2011 François Vilar 3/30



numerical solutions using third order limited DG on a polygonal grid made of 2500 cells

September 2011 François Vilar Cell-centered DG scheme 4/30

rate of convergence with and without the slope limitation

		L ₁	L ₂
linear advection	first order	1.02	1.02
	second order	1.99	1.98
	second order lim	2.15	2.15
	third order	2.98	2.98
	third order lim	3.45	3.22

Table: for the smooth solution $u_0(\mathbf{x}) = \sin(2\pi x)\sin(2\pi y)$ on a $[0,1]^2$ Cartesian grid

1D Lagrangian hydrodynamics

- Introduction
 - Discontinuous Galerkin (DG)
 - Scalar conservation laws
 - 1D Lagrangian hydrodynamics
- 2 2D Lagrangian hydrodynamics
 - References
 - System and equations
 - Geometric consideration
 - 2nd order Deformation tensor
 - 2nd order DG scheme
- 3 Conclusion

1D Lagrangian hydrodynamics

influence of the limitation on the linearized Riemann invariants

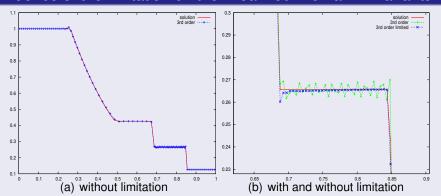
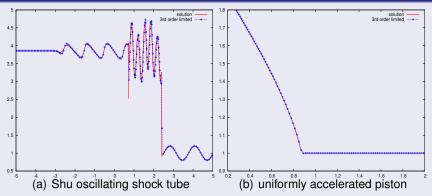


Figure: third order DG for the Sod shock tube problem using 100 cells: density

3rd order DG scheme with limitation: density



P.-H. MAIRE, A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes J. Comp. Phys., 2009

7/30

Cell-centered DG scheme September 2011 François Vilar

rate of convergence with and without the slope limitation

		<i>L</i> ₁	L ₂
gas dynamics	first order		0.73
	second order	2.25	2.26
	second order lim	2.04	2.21
	third order	3.39	3.15
	third order lim	2.75	2.72

Table: for a smooth solution in the special case $\gamma=3$

F. VILAR, P.-H. MAIRE, R. ABGRALL, *Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics*, Comp. & Fluids, 2010

(ロ) (団) (巨) (巨) (巨) (つ)

- - Discontinuous Galerkin (DG)
 - Scalar conservation laws
 - 1D Lagrangian hydrodynamics
- 2D Lagrangian hydrodynamics
 - References
 - System and equations
 - Geometric consideration

 - 2nd order DG scheme

Introduction 2D Lagrangian hydrodynamics Conclusion

References System and equations Geometric consideration 2nd order Deformation tensor 2nd order DG scheme

- F. L. ADESSIO, D. E. CARROLL, J. K. DUKOWICZ, N. L. JOHNSON, B. A. KASHIWA, M. E. MALTRUD, H. M. RUPPEL, *Caveat: a computer code for fluid dynamics problems with large distortion and internal slip*, Los Alamos National Laboratory, 1986
- R. LOUBÈRE, Une Méthode Particulaire Lagrangienne de type Galerkin Discontinu. Application à la Mécanique des Fluides et l'Interaction Laser/Plasma, PhD thesis, Université Bordeaux I, 2002
- B. DESPRÉS, C. MAZERAN, Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems, Arch. Rational Mech. Anal., 2005
- P.-H. MAIRE, R. ABGRALL, J. BREIL, J. OVADIA, A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, SIAM J. Sci. Comp, 2007

◆ロト ◆問 ▶ ◆意 ▶ ◆意 ▶ ・ 意 ・ 釣 ♀ (

- - Discontinuous Galerkin (DG)
 - Scalar conservation laws
 - 1D Lagrangian hydrodynamics
- 2D Lagrangian hydrodynamics
 - References
 - System and equations

 - 2nd order DG scheme

$$\rho^0 \frac{d}{dt} (\frac{1}{\rho}) - \nabla_{\boldsymbol{X}} \cdot (J \mathsf{F}^{-1} \boldsymbol{U}) = 0 \tag{1a}$$

$$\rho^0 \frac{d\mathbf{U}}{dt} + \nabla_{\mathbf{X}} \cdot (J\mathsf{F}^{-t}P) = \mathbf{0}$$
 (1b)

$$\rho^0 \frac{dE}{dt} + \nabla_{\mathbf{X}} \cdot (JF^{-1}P\mathbf{U}) = 0$$
 (1c)

where X is the Lagrangian (initial) coordinate

- $F = \frac{\partial \mathbf{x}}{\partial \mathbf{y}}$ is called the deformation gradient tensor, where \mathbf{x} is the Eulerian (actual) coordinate and J = det(F)
- using the trajectory equation $\frac{d\mathbf{x}}{dt} = \mathbf{U}(\mathbf{x}, t) \Longrightarrow \frac{d\mathbf{F}}{dt} = \nabla_{\mathbf{X}}\mathbf{U}$
- Piola compatibility condition $\nabla_{\mathbf{X}} \cdot (J\mathsf{F}^{-t}) = \mathbf{0}$ (3)

References System and equations Geometric consideration 2nd order Deformation tensor 2nd order DG scheme

- Introduction
 - Discontinuous Galerkin (DG)
 - Scalar conservation laws
 - 1D Lagrangian hydrodynamics
- 2 2D Lagrangian hydrodynamics
 - References
 - System and equations
 - Geometric consideration
 - 2nd order Deformation tensor
 - 2nd order DG scheme
- Conclusion

• being given a mapping $\mathbf{x} = \mathbf{\Phi}(\mathbf{X}, t)$

$$\mathsf{F} = \nabla_{\mathbf{X}} \mathbf{\Phi} \tag{4}$$

• developing Φ on the basis functions λ_n in the cell Ω_c

$$egin{align} oldsymbol{\Phi}_h^c(oldsymbol{X},t) &= oldsymbol{\Phi}_h(oldsymbol{X},t)|_{\Omega_c} \ &= \sum_{oldsymbol{
ho}} \lambda_{oldsymbol{
ho}}(oldsymbol{X}) oldsymbol{\Phi}_{oldsymbol{
ho}}(t) \end{split}$$

where the p points are some control points

• by setting $G_c = (JF^{-t})_c$

$$abla_{\mathbf{X}} \cdot \mathsf{G}_{c} = \sum_{\mathbf{p}} \left(\begin{array}{c} \Phi_{\mathbf{p}}^{Y}(\partial_{YX}\lambda_{\mathbf{p}} - \partial_{XY}\lambda_{\mathbf{p}}) \\ -\Phi_{\mathbf{p}}^{X}(\partial_{YX}\lambda_{\mathbf{p}} - \partial_{XY}\lambda_{\mathbf{p}}) \end{array} \right) = \mathbf{0}$$

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < ○

- using (4) and $\frac{d}{dt}\Phi_p = U_p \implies \frac{d}{dt}\mathsf{F}_c = \sum_{c} U_p \otimes \nabla_X \lambda_p$ (5)
- in 2D, $F \longrightarrow JF^{-t} = G$ is a linear function
- $JF^{-t}N$ represents the geometric normal in the Eulerian frame thanks to Nanson formula $JF^{-t}NdS = GNdS = nds$
- to ensure this quantity to be continuous, we discretize F by means of mapping defined on triangular cells T_i^c with $i=1\ldots ntri$, using finite elements polynomial basis

• using the fact $\frac{d}{dt} F = \nabla_{\mathbf{X}} \mathbf{U}$, F approximation order has to be one less than the one obtain with the DG scheme on $\frac{1}{a}$, \mathbf{U} and \mathbf{E}

- - Discontinuous Galerkin (DG)
 - Scalar conservation laws
 - 1D Lagrangian hydrodynamics
- 2D Lagrangian hydrodynamics
 - References
 - System and equations
 - Geometric consideration
 - 2nd order Deformation tensor
 - 2nd order DG scheme

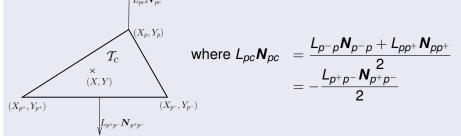
References System and equations Geometric consideration 2nd order Deformation tensor 2nd order DG scheme

• for the P₁ representation, the chosen finite elements polynomial basis in a general triangle T_c write

$$\lambda_{p}(\mathbf{X}) = \frac{1}{2|\mathcal{T}_{c}|} [X(Y_{p^{+}} - Y_{p^{-}}) - Y(X_{p^{+}} - X_{p^{-}}) + X_{p^{+}}Y_{p^{-}} - X_{p^{-}}Y_{p^{+}}]$$
(6)

• we can access to $\nabla_{\mathbf{X}} \lambda_{p}$ needed in (5)

$$\nabla_{\boldsymbol{X}} \lambda_{p}(\boldsymbol{X}) = \frac{1}{2|\mathcal{T}_{c}|} \begin{pmatrix} Y_{p^{+}} - Y_{p^{-}} \\ X_{p^{-}} - X_{p^{+}} \end{pmatrix} = \frac{1}{|\mathcal{T}_{c}|} L_{pc} \boldsymbol{N}_{pc}$$
(7)



Cell-centered DG scheme François Vilar September 2011 13/30 System and equations Geometric consideration 2nd order Deformation tensor 2nd order DG scheme

 with this definition, GN continuity is well preserved at the interface betweens triangles

$$\mathcal{T}_{c}$$
 $\mathcal{T}_{pp^{+}}$
 $\mathcal{T}_{pp^{+}}$

$$G_{c} L_{\rho\rho^{+}} \mathbf{N}_{\rho\rho^{+}} = \frac{1}{|\mathcal{T}_{c}|} \sum_{p_{t} \in \mathcal{P}(\mathcal{T}_{c})} L_{p_{t}c} L_{\rho\rho^{+}} \begin{pmatrix} \Phi_{\rho}^{Y} (N_{\rho\rho^{+}}^{X} N_{p_{t}c}^{Y} - N_{\rho\rho^{+}}^{Y} N_{p_{t}c}^{X}) \\ -\Phi_{\rho}^{X} (N_{\rho\rho^{+}}^{X} N_{p_{t}c}^{Y} - N_{\rho\rho^{+}}^{Y} N_{p_{t}c}^{X}) \end{pmatrix}$$

$$= \frac{1}{|\mathcal{T}_{c}|} \sum_{p_{t} \in \mathcal{P}(\mathcal{T}_{c})} (L_{\rho\rho^{+}} \mathbf{T}_{\rho\rho^{+}} \cdot L_{p_{t}c} \mathbf{N}_{p_{t}c}) \begin{pmatrix} \Phi_{\rho}^{Y} \\ -\Phi_{\rho}^{X} \end{pmatrix}$$

$$= \begin{pmatrix} \Phi_{\rho^{+}}^{Y} - \Phi_{\rho}^{Y} \\ \Phi_{\rho^{-}}^{X} - \Phi_{\rho^{+}}^{X} \end{pmatrix} = \begin{pmatrix} y_{\rho^{+}} - y_{\rho} \\ x_{\rho^{-}} - x_{\rho^{+}} \end{pmatrix} = I_{\rho\rho^{+}} \mathbf{n}_{\rho\rho^{+}}$$

$$(9)$$

September 2011 François Vilar Cell-centered DG scheme 14/30

References System and equations Geometric consideration 2nd order Deformation tensor 2nd order DG scheme

- - Discontinuous Galerkin (DG)
 - Scalar conservation laws
 - 1D Lagrangian hydrodynamics
- 2D Lagrangian hydrodynamics
 - References
 - System and equations
 - Geometric consideration

 - 2nd order DG scheme

Discontinuous Galerkin

• $\{\sigma_k^c\}_{k=0...K}$ basis of $\mathbb{P}^{order-1}(\Omega_c)$

•
$$\phi_h^c(\boldsymbol{X},t) = \sum_{k=0}^K \phi_k^c(t) \sigma_k^c(\boldsymbol{X})$$
 approximate of $\phi(\boldsymbol{X},t)$ on Ω_c

• Taylor basis, $k_1 + k_2 = k$

$$\sigma_{k}^{c} = \frac{1}{k_{1}!k_{2}!} \left[\left(\frac{X - X_{c}}{\Delta X_{c}} \right)^{k_{1}} \left(\frac{Y - Y_{c}}{\Delta Y_{c}} \right)^{k_{2}} - \left\langle \left(\frac{X - X_{c}}{\Delta X_{c}} \right)^{k_{1}} \left(\frac{Y - Y_{c}}{\Delta Y_{c}} \right)^{k_{2}} \right\rangle \right]$$

• for the second order scheme, K=2

$$\sigma_0^c = 1, \, \sigma_1^c = \frac{X - X_c}{\Delta X_c}, \, \sigma_2^c = \frac{Y - Y_c}{\Delta Y_c}$$

where $\Delta X_c = \frac{X_{max} - X_{min}}{2}$ and $\Delta Y_c = \frac{Y_{max} - Y_{min}}{2}$ with X_{max} , Y_{max} , X_{min} , Y_{min} the maximum and minimum coordinates in the cell Ω_c

François Vilar Cell-centered DG scheme September 2011 15/30

Density

• local variational formulation of (1a) on Ω_c

$$\begin{split} \int_{\Omega_c} & \frac{d}{dt} (\frac{1}{\rho}) \sigma_q \mathrm{d}\Omega = \sum_{k=0}^K \frac{d}{dt} (\frac{1}{\rho})_k \int_{\Omega_c} & \rho^0 \sigma_q \sigma_k \mathrm{d}\Omega \\ &= \int_{\Omega_c} & \sigma_q \nabla_{\boldsymbol{X}} \cdot (J \mathsf{F}^{-1} \boldsymbol{U}) \mathrm{d}\Omega \\ &= - \int_{\Omega_c} & J \mathsf{F}^{-t} \nabla_{\boldsymbol{X}} \sigma_q \mathrm{d}\Omega + \int_{\partial\Omega_c} \overline{\boldsymbol{U}} \cdot \sigma_q J \mathsf{F}^{-t} \boldsymbol{N} \mathrm{d}L \end{split}$$

• $\mathsf{G}^c_i = (J\mathsf{F}^{-t})^c_i$ is constant on \mathcal{T}^c_i and $\nabla_{\pmb{X}}\sigma_q$ over Ω_c

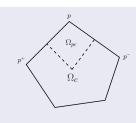
$$\int_{\Omega_c}^{\rho^0} \frac{d}{dt} (\frac{1}{\rho}) \sigma_q \mathrm{d}\Omega = -\sum_{i=1}^{ntri} \mathsf{G}_i^c \nabla_{\pmb{X}} \sigma_q . \int_{\mathcal{T}_i^c}^{\pmb{U}} \! \mathrm{d}\mathcal{T} + \int_{\partial \Omega_c} \overline{\pmb{U}} . \sigma_q \mathsf{G} \pmb{N} \mathrm{d}L$$

September 2011

References System and equations Geometric consideration 2nd order Deformation tensor 2nd order DG scheme

$$\int_{\Omega_{c}}^{\rho_{0}} \frac{d}{dt} (\frac{1}{\rho}) \sigma_{q} d\Omega \simeq - \sum_{i=1}^{ntri} G_{i}^{c} \nabla_{\mathbf{X}} \sigma_{q} \cdot \int_{\mathcal{T}_{i}^{c}}^{\mathbf{U}} \mathbf{U} dT$$

$$+ \sum_{p \in \mathcal{P}(\Omega_{c})} \mathbf{U}_{p} \cdot \underbrace{\int_{\partial \Omega_{c} \cap \partial \Omega_{pc}}^{\sigma_{q}} \mathbf{GN} dL}_{f_{pc}^{q} n_{pc}^{q}}$$



finally, the equation on the density leads to

$$\int_{\Omega_c}^{\rho_0} \frac{d}{dt} (\frac{1}{\rho}) \sigma_q d\Omega = -\sum_{i=1}^{ntri} G_i^c \nabla_{\mathbf{X}} \sigma_q \cdot \int_{\mathcal{T}_i^c} \mathbf{U} d\mathcal{T} + \sum_{p \in \mathcal{P}(\Omega_c)} \mathbf{U}_p \cdot l_{pc}^q \mathbf{n}_{pc}^q$$
(10)

• for the first order with $I_{pc} \mathbf{n}_{pc} = I_{pc}^0 \mathbf{n}_{pc}^0$

$$m_c \frac{d}{dt} (\frac{1}{\rho})_c = \int_{\Omega_c}^{\rho} \frac{d}{dt} (\frac{1}{\rho}) d\Omega = \sum_{p \in \mathcal{P}(\Omega_c)} \mathbf{U}_p \cdot l_{pc} \mathbf{n}_{pc}$$
(11)

Cell-centered DG scheme François Vilar September 2011 17/30

Velocity

• local variational formulation of (1b) on Ω_c leads to

$$\int_{\Omega_c} \rho^0 \frac{d \mathbf{U}}{dt} \sigma_q d\Omega = \sum_{i=1}^{ntri} G_i^c \nabla_{\mathbf{X}} \sigma_q \int_{\mathcal{T}_i^c} P d\mathcal{T} - \sum_{p \in \mathcal{P}(\Omega_c)} \mathbf{F}_{pc}^q$$
(12)

• for the first order with $\boldsymbol{F}_{pc} = \boldsymbol{F}_{pc}^0$

$$m_c \frac{d \mathbf{U}_c}{dt} = \int_{\Omega_c} \rho^0 \frac{d \mathbf{U}}{dt} d\Omega = -\sum_{\rho \in \mathcal{P}(\Omega_c)} \mathbf{F}_{\rho c}$$
 (13)

<ロ > → □ → → □ → → □ → への○

References System and equations Geometric consideration 2nd order Deformation tensor 2nd order DG scheme

Energy

• local variational formulation of (1c) on Ω_c

$$\int_{\Omega_c} \rho^0 \frac{dE}{dt} \sigma_q d\Omega = \sum_{i=1}^{ntri} G_i^c \nabla_{\mathbf{X}} \sigma_q \cdot \int_{\mathcal{T}_i^c} \mathbf{U} d\mathcal{T} - \sum_{p \in \mathcal{P}(\Omega_c)} \int_{\partial \Omega_c \cap \partial \Omega_{pc}} \overline{\mathbf{P} \mathbf{U}} \cdot \sigma_q G \mathbf{N} dL \quad (14)$$

- ullet we make the following fundamental assumption $P {oldsymbol U} = P {oldsymbol U}$
- finally, the equation on the energy rewrites

$$\int_{\Omega_c} \rho^0 \frac{dE}{dt} \sigma_q d\Omega = \sum_{i=1}^{ntri} G_i^c \nabla_{\mathbf{X}} \sigma_q \cdot \int_{\mathcal{T}_i^c} \mathbf{U} d\mathcal{T} - \sum_{p \in \mathcal{P}(\Omega_c)} \mathbf{U}_p \cdot \mathbf{F}_{pc}^q$$
(15)

for the first order

$$m_c \frac{d E_c}{dt} = \int_{\Omega_c} \rho^0 \frac{d E}{dt} d\Omega = -\sum_{p \in \mathcal{P}(\Omega_c)} \mathbf{U}_p \cdot \mathbf{F}_{pc}$$
 (16)

←□ → ←□ → ←□ → ←□ →

September 2011 François Vilar Cell-centered DG scheme 19/30

Introduction 2D Lagrangian hydrodynamics Conclusion

References System and equations Geometric consideration 2nd order Deformation tensor 2nd order DG scheme

Entropic analysis

• the use of variational formulations and Gibbs formula leads to

$$\int_{\Omega_{c}}^{\rho^{0}} T \frac{dS}{dt} d\Omega = \int_{\partial\Omega_{c}} [\overline{P} \mathbf{U} + P \overline{\mathbf{U}} - \overline{P} \overline{\mathbf{U}} - P \mathbf{U}] \cdot G \mathbf{N} dL$$

$$= \sum_{f \in \mathcal{F}(\Omega_{c})} \int_{f} (\overline{P} - P) (\mathbf{U} - \overline{\mathbf{U}}) \cdot G \mathbf{N} dL \tag{17}$$

• a sufficient condition to satisfy $\int_{\Omega_c}^{\rho^0} T \frac{dS}{dt} d\Omega \ge 0$ consists in setting

$$\overline{P}(\boldsymbol{X_f}) = Pc(\boldsymbol{X_f}) - Z_c(\overline{\boldsymbol{U}}(\boldsymbol{X_f}) - \boldsymbol{U_c}(\boldsymbol{X_f})) \cdot \frac{G\boldsymbol{N}}{\|G\boldsymbol{N}\|}$$
 (18)

where X_f is a point on the face f and Z_c a positive constant with a physical dimension of a density times a velocity

September 2011 François Vilar Cell-centered DG scheme 20/30

• using this expression to calculate F_{pc}^q leads to

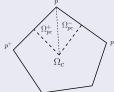
• finally, \mathbf{F}_{pc}^{q} writes

$$\boldsymbol{F}_{pc}^{q} = P_{c}(p) I_{pc}^{q} \boldsymbol{n}_{pc}^{q} - M_{pc}^{q} (\boldsymbol{U}_{p} - \boldsymbol{U}_{c}(p))$$
 (19)

4 中 3 4 伊 3 4 日 3

September 2011

• M^q_{pc} are defined as $\mathsf{M}^q_{pc} = Z_c \int_{\partial \Omega_c \cap \partial \Omega_{cc}} \frac{\mathsf{G} \mathbf{N}}{\|\mathsf{G} \mathbf{N}\|} \otimes \mathsf{G} \mathbf{N} \ \sigma_q \mathrm{d} L$

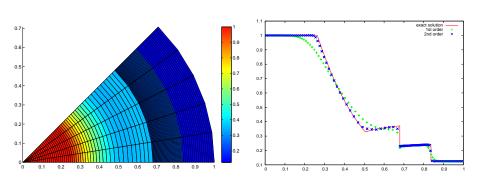


$$= Z_c \left(I_{pc}^{q,+} \boldsymbol{n}_{pc}^+ \otimes \boldsymbol{n}_{pc}^+ + I_{pc}^{q,-} \boldsymbol{n}_{pc}^- \otimes \boldsymbol{n}_{pc}^- \right)$$

- $\mathsf{M}_{pc}^0 = \mathsf{M}_{pc} = Z_c \, (I_{pc}^+ \pmb{n}_{pc}^+ \otimes \pmb{n}_{pc}^+ + I_{pc}^- \pmb{n}_{pc}^- \otimes \pmb{n}_{pc}^-)$ is semi definite positive matrix with a physical dimension of a density times a velocity
- to be conservative in total energy over the whole domain, $\sum F_{pc} = \mathbf{0}$ and consequently $c \in C(p)$

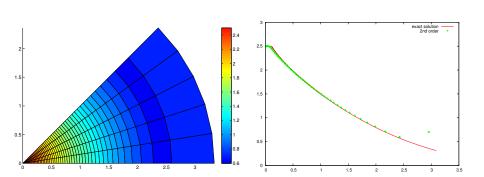
$$\left(\sum_{c\in\mathcal{C}(p)} M_{pc}\right) \boldsymbol{U}_{p} = \sum_{c\in\mathcal{C}(p)} \left[P_{c}(p) I_{pc} \boldsymbol{n}_{pc} + M_{pc} \boldsymbol{U}_{c}(p)\right] \qquad (20)$$

Cell-centered DG scheme September 2011 François Vilar 22/30



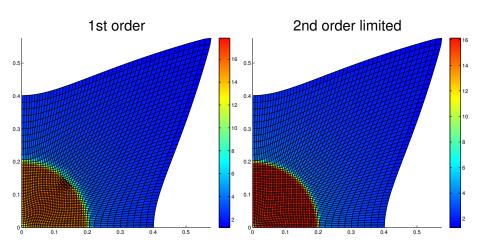
Sod shock tube problem on a polar grid made of 500 cells: density map with limitation

September 2011 François Vilar Cell-centered DG scheme 23/30



expansion wave into vacuum problem on a polar grid made of 250 cells: internal energy map with limitation

September 2011 François Vilar Cell-centered DG scheme 24/30



Noh problem on a Cartesian grid made of 2500 cells: density map

September 2011 François Vilar Cell-centered DG scheme 25/30

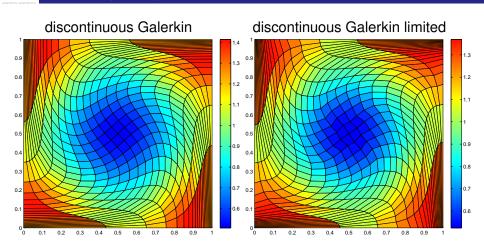
Sedov problem on a Cartesian grid made of 900 cells and a polygonal one made of 775 cells: density map with limitation

- **(ロ)(即)(注)(注)** 注 りなの

initial grid actual grid

Gresho problem on a polar grid made of 720 cells: pressure map with limitation

September 2011 François Vilar Cell-centered DG scheme 27/30



Taylor-Green vortex problem on a cartesian grid made of 400 cells: pressure map without limitation at t=0.75s

September 2011 François Vilar Cell-centered DG scheme 28/30

	without limitation		with limitation		
h	$q_{L_2}^h$	$q_{L_{\infty}}^h$	$q_{L_2}^h$	$q_{L_{\infty}}^h$	
1/20	1.74	1.35	2.05	1.54	
$\frac{1}{40}$	1.85	1.85	2.11	1.81	
<u>1</u> 80	1.42	2.34	1.58	1.54	

Table: rate of convergence computed for second order DG scheme

	Green Muscl		Discontinuous Galerkin		
h	$E_{L_2}^h$	$\mathcal{E}_{L_{\infty}}^{h}$	$E_{L_2}^h$	$\mathcal{E}_{\mathcal{L}_{\infty}}^{h}$	
1 20	1.854E-2	6.596E-2	1.120E-2	3.678E-2	
1 40	6.500E-3	2.452E-2	3.356E-3	1.446E-2	
<u>1</u>	1.817E-3	9.122E-3	9.314E-4	4.019E-3	
160	4.944E-4	2.555E-3	3.471E-4	7.959E-4	

Table: numerical errors computed at t=0.6s on the pressure

29/30

- Introduction
 - Discontinuous Galerkin (DG)
 - Scalar conservation laws
 - 1D Lagrangian hydrodynamics
- 2 2D Lagrangian hydrodynamics
 - References
 - System and equations
 - Geometric consideration
 - 2nd order Deformation tensor
 - 2nd order DG scheme
- 3 Conclusion

Conclusions

- DG schemes up to 3rd order
 - linear and non-linear scalar conservation laws in 1D and 2D on general unstructured grids
 - 1D gas dynamics system in Lagrangian formalism
- DG scheme up to 2nd order for the 2D gas dynamics system in Lagrangian formalism with particular geometric consideration
- numerical flux studies
- Riemann invariants limitation

Prospects

- 3rd order DG scheme for the 2D gas dynamics system in Lagrangian formalism
- validation
- extension to ALE

September 2011 François Vilar Cell-centered DG scheme 30/30