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@ extension of finite volumes method
@ polynomial approximation of the solution in the cells
@ high order scheme, high precision

@ local variational formulation

@ choice of the numerical fluxes (global L? stability, entropic
inequality)

@ time discretization - TVD multistep Runge-Kutta
[{ C.-W. SHu, Discontinuous Galerkin methods: General

approach and stability, 2008

@ limitation - vertex-based hierarchical slope limiters

[3 D. KuzMIN, A vertex-based hierarchical slope limiter for

p-adaptive discontinuous Galerkin methods J. Comp. Appl.
Math., 2009
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comparison between the second order and the third order
scheme with limitation
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Figure: linear advection of a combination of smooth and discontinuous
profiles
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advection : solid body rotation Burgers
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numerical solutions using third order limited DG on a polygonal grid
made of 2500 cells
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rate of convergence with and without the slope limitation
| | | L [ L |

first order 1.02 | 1.02
second order 1.99 | 1.98
linear advection || second order lim | 2.15 | 2.15

third order 2.98 | 2.98
third order lim 3.45 | 3.22

Table: for the smooth solution uy(x) = sin(2rx) sin(27y) on a [0, 1]?
Cartesian grid
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influence of the limitation on the linearized Riemann invariants
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(a) without limitation (b) with and without limitation

Figure: third order DG for the Sod shock tube problem using 100 cells:
density
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3rd order DG scheme with limitation: density

" solution’ " solution
3rd order limited -+ 31d order limited —+
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(b) uniformly accelerated piston

5

(4a) éhurzosc‘illatiung éhoék tJbe '

W P.-H. MAIRE, A high-order cell-centered Lagrangian scheme for
two-dimensional compressible fluid flows on unstructured meshes
J. Comp. Phys., 2009
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rate of convergence with and without the slope limitation
| H | L[ L |

first order 0.80 | 0.73
second order 2.25 | 2.26
gas dynamics || second order lim | 2.04 | 2.21

third order 3.39 | 3.15
third order lim 2.75 | 2.72

Table: for a smooth solution in the special case v = 3

[3 F. VILAR, P.-H. MAIRE, R. ABGRALL, Cell-centered discontinuous
Galerkin discretizations for two-dimensional scalar conservation
laws on unstructured grids and for one-dimensional Lagrangian
hydrodynamics, Comp. & Fluids, 2010
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@ gas dynamics system in Lagrangian formalism

0d 1

—1 .
i )= Vx.(JF'U)=0 (1a)
pcgf+v .(JF7'!P)=0 (1b)
pocgf +Vx.(JF'PU)=0 (1c)

where X is the Lagrangian (initial) coordinate

e F= X is called the deformation gradient tensor, where x is the
Eulerian (actual) coordinate and J = det(F)

@ using the trajectory equation ((j),x =U(x,t) = Cyt: =VxU (2

@ Piola compatibility condition Vy.(JF~!) =0 (3)
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@ being given a mapping x = ®(X, f)
F=Vx® (4)
@ developing ® on the basis functions A, in the cell Q¢
(X, 1) = ®p(X, 1)
=D Ao(X) ®p(t)
P

where the p points are some control points
@ by setting G, = (JF~!);

Y (DyxAp — OxyAp)
Vx.Ge¢ ; ( _q>§(ayx>\p — OxyAp) °
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. d d
o using (4)and —®p=U, — Fo= zp: Up@Vxrp (5
@ in2D, F — JF~! =G is alinear function

@ JF~IN represents the geometric normal in the Eulerian frame
thanks to Nanson formula JF~{NdS = GNdS = nds

Qc

@ to ensure this quantity to be
continuous, we discretize F by means »
of mapping defined on triangular cells
7,° with i = 1... ntri, using finite
elements polynomial basis

@ using the fact %F = VxU, F approximation order has to be one

less than the one obtain with the DG scheme on 2), Uand E
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@ for the Py representation, the chosen finite elements polynomial
basis in a general triangle 7. write

Ao(X) = 2|T|[X( —Yp-) = Y(Xpr — Xp-) + Xpr Y- — Xp- Ypi] (6)
@ we can access to Vx\p needed in (5)
1 Yoo — Y, 1
Vx p(X) = =— P p > — LN 7
o0 =g (X ) et O
LyeN e

Lp-pNp-p + Lppt Npp+

2
Npip-
2

Lpip-

(Xp+, Ypr) (X Yp)
Ly N ey
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d 1
@ the equation (5) rewrites EFC A > Up®LpNpe  (8)
“ peP(To) »
T
@ with this definition, GN continuity is well ~
preserved at the interface betweens triangles "
P p
1 OY(NX NY, — NY NX,)
GcLpp+N = s P PP P Y
o EE pte%(:Tc) o —V (Np/D+ NPtC ,\I/Dp+ Nprc)
1 34
= m Z (Lpp+ Tpp+ . Lptchtc) —q)X
! peP(Tc) P
o —p Yo =
= <bX oX. |~ ( xZ _ xpf ) = oo Mo+ &
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Discontinuous Galerkin

(4] {Uﬁ}k:o_..K basis of [porder—1 ()
K

o ¢5(X, 1) = ¢f(t)oi(X) approximate of ¢(X, t) on Qg
k=0

@ Taylor basis, k1 + ko = k

1 X—X.. Y-Y, X—X.. Y—Y,
c __ C\Kkq Cyko C\ky Cko
Tk~ KTk A&) (An,) <(A&) (An) )

@ for the second order scheme, K =2

X=X o Y=Y
AX, 27 TAY,

og=1,07=

where AX, = XmaXmn and A Y, = YmeYmn with Xpax, Yinax,
Xmin» Ymin the maximum and minimum coordinates in the cell Q.

v
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@ local variational formulation of (1a) on Q.

o+ "
P 't( )quQ E 't =)k /p Uqade

= / oqVx - (JFTTU)AQ

o]

=— [U.JF'VxogdQ+ | U.ogJF'NdL
Qc an

@ Gf = (JF")¢is constant on 7,° and Vxoq over Q¢
ntri

d 1 b

0 @

p—(=)ogdQ = — GiVxog. | UdT + U.o,GNdL
/chl‘(p)q ; IVxoq- | ¢ o, 74
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@ finally, the equation on the density leads to

d 1 ntri
i=1 PEP(L2c)

e for the first order with locnpe = 19.n3.

d 1 od 1

PEP(L2e)
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Velocity

@ local variational formulation of (1b) on Q. leads to

ntri
quQ Z G¢Vxoq / PAT — )" F} (12)
QC peP(Q)
where Fl. = [ Po,GNdL

020Np0
e for the first order with Fpe = Fgc

s PEP(L2c)
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@ local variational formulation of (1c) on Q.

ntri
aqu ZG Vxog- /PUdT > PU.o,GNAL (14)
peP(Qe) ¥ 92N

@ we make the following fundamental assumption PU=PU
@ finally, the equation on the energy rewrites

dE ntri
P qd) = ZG Vxog- /PUdT S U,.FL  (15)
Qe PEP(L2c)
@ for the first order

dE; [ dE
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Entropic analysis

@ the use of variational formulations and Gibbs formula leads to

/ 079540 = /[PU+PU—PU—PU].GNdL
dt Q¢

= > /P P)(U — U).GNdL (17)

feF ()
ds
@ a sufficient condition to satisfy TTdQ > 0 consists in setting
Qc
_ — GN
P(X¢) = Pc(X¢) — Zo (U(Xf) — Uc(Xy)) « TGN (18)

where X is a point on the face f and Z; a positive constant with a
physical dimension of a density times a velocity
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@ using this expression to calculate Fgc leads to
Ff,’c = P oqJFINdL
OQNOpc
— GN
Q2NOps Q2cNOpc
~ P:(p) oqGNdL
aﬂcﬂaﬂpc
GN
— | Ze(Up— Ue(p)) - wpir 7qGNAL
OQNOps
o finally, Fj, writes
ch = Pc(p) /pcnpc M c(Up — Uc(p)) (19)

September 2011 Frangois Vilar Cell-centered DG scheme
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) M are defined as Mpc =2 / Sl ® GN oqdL

8926N02p0 IGN||
=7 (lq’ ni. @ nk, + I Npe ® Npg)

P

where 3" :/ oqdL
ancman

© MO: = Mpe = Ze (Igefe ® M + lpeNpe ® Npe) is semi definite
positive matrix with a physical dimension of a density times a
velocity
@ to be conservative in total energy over the whole domain,
> Fpec = 0 and consequently
ceC(p)

Z Mpc) Up = Z [Pe(P) lpcNpe + Mpe Uc(p)] (20)
ceC(p) ceC(p)
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N ) ) ) ) ) ) " exatt solution’
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Sod shock tube problem on a polar grid made of 500 cells: density
map with limitation
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" exact soldtion
2nd order

0 05 1 15 2 25 3 35

expansion wave into vacuum problem on a polar grid made of 250
cells: internal energy map with limitation
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Noh problem on a Cartesian grid made of 2500 cells: density map
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0
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Sedov problem on a Cartesian grid made of 900 cells and a polygonal
one made of 775 cells: density map with limitation
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initial grid actual grid
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Gresho problem on a polar grid made of 720 cells: pressure map with
limitation
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Taylor-Green vortex problem on a cartesian grid made of 400 cells:
pressure map without limitation at t=0.75s
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Table: rate of convergence computed for second order DG scheme

2D Lagrangian hydrodynamics

2nd order Deformation tensor 2nd order DG scheme

] H without limitation H with limitation \

hla, | a. a;, | ar.
6 1174 135 [2.05]| 1.54
w1185 185 [ 211] 1.81
a0 | 142 234 [ 158] 154

] Green Muscl | Discontinuous Galerkin |
h E[’z E[’OO E[’Z Efoo
21—0 1.854E-2 | 6.596E-2 || 1.120E-2 3.678E-2
41—0 6.500E-3 | 2.452E-2 || 3.356E-3 1.446E-2
81—0 1.817E-3 | 9.122E-3 || 9.314E-4 4.019E-3
11@ 4.944E-4 | 2.555E-3 || 3.471E-4 7.959E-4

Table: numerical errors computed at t=0.6s on the pressure
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Conclusions

@ DG schemes up to 3rd order

e linear and non-linear scalar conservation laws in 1D and 2D on
general unstructured grids
o 1D gas dynamics system in Lagrangian formalism

@ DG scheme up to 2nd order for the 2D gas dynamics system in
Lagrangian formalism with particular geometric consideration

@ numerical flux studies

@ Riemann invariants limitation

Prospects

@ 3rd order DG scheme for the 2D gas dynamics system in
Lagrangian formalism

@ validation
@ extension to ALE
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