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extension of finite volumes method
polynomial approximation of the solution in the cells
high order scheme, high precision

local variational formulation
choice of the numerical fluxes (global L2 stability, entropic
inequality)
time discretization - TVD multistep Runge-Kutta

C.-W. SHU, Discontinuous Galerkin methods: General
approach and stability, 2008

limitation - vertex-based hierarchical slope limiters

D. KUZMIN, A vertex-based hierarchical slope limiter for
p-adaptive discontinuous Galerkin methods J. Comp. Appl.
Math., 2009

September 2011 François Vilar Cell-centered DG scheme 2 / 30



Introduction 2D Lagrangian hydrodynamics Conclusion

Discontinuous Galerkin (DG) Scalar conservation laws 1D Lagrangian hydrodynamics

1 Introduction
Discontinuous Galerkin (DG)
Scalar conservation laws
1D Lagrangian hydrodynamics

2 2D Lagrangian hydrodynamics
References
System and equations
Geometric consideration
2nd order Deformation tensor
2nd order DG scheme

3 Conclusion

September 2011 François Vilar Cell-centered DG scheme 2 / 30



Introduction 2D Lagrangian hydrodynamics Conclusion

Discontinuous Galerkin (DG) Scalar conservation laws 1D Lagrangian hydrodynamics

comparison between the second order and the third order
scheme with limitation
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profiles
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advection : solid body rotation
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rate of convergence with and without the slope limitation

L1 L2

first order 1.02 1.02
second order 1.99 1.98

linear advection second order lim 2.15 2.15
third order 2.98 2.98

third order lim 3.45 3.22

Table: for the smooth solution u0(x) = sin(2πx) sin(2πy) on a [0, 1]2

Cartesian grid
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influence of the limitation on the linearized Riemann invariants
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3rd order DG scheme with limitation: density
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P.-H. MAIRE, A high-order cell-centered Lagrangian scheme for
two-dimensional compressible fluid flows on unstructured meshes
J. Comp. Phys., 2009
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rate of convergence with and without the slope limitation

L1 L2

first order 0.80 0.73
second order 2.25 2.26

gas dynamics second order lim 2.04 2.21
third order 3.39 3.15

third order lim 2.75 2.72

Table: for a smooth solution in the special case γ = 3

F. VILAR, P.-H. MAIRE, R. ABGRALL, Cell-centered discontinuous
Galerkin discretizations for two-dimensional scalar conservation
laws on unstructured grids and for one-dimensional Lagrangian
hydrodynamics, Comp. & Fluids, 2010
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gas dynamics system in Lagrangian formalism

ρ0 d
dt

(
1
ρ
)−∇X � (JF−1U) = 0 (1a)

ρ0 dU
dt

+∇X � (JF−tP) = 0 (1b)

ρ0 dE
dt

+∇X � (JF−1PU) = 0 (1c)

where X is the Lagrangian (initial) coordinate

F =
∂x
∂X

is called the deformation gradient tensor, where x is the
Eulerian (actual) coordinate and J = det(F)

using the trajectory equation
dx
dt

= U(x , t) =⇒ d F
dt

= ∇X U (2)

Piola compatibility condition ∇X � (JF−t) = 0 (3)
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being given a mapping x = Φ(X , t)

F = ∇XΦ (4)

developing Φ on the basis functions λp in the cell Ωc

Φc
h(X , t) = Φh(X , t)|Ωc

=
∑

p

λp(X ) Φp(t)

where the p points are some control points
by setting Gc = (JF−t)c

∇X � Gc =
∑

p

(
ΦY

p (∂YX λp − ∂XY λp)

−ΦX
p (∂YX λp − ∂XY λp)

)
= 0

September 2011 François Vilar Cell-centered DG scheme 11 / 30
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using (4) and
d
dt

Φp = Up =⇒ d
dt

Fc =
∑

p

Up ⊗∇X λp (5)

in 2D, F −→ JF−t = G is a linear function
JF−tN represents the geometric normal in the Eulerian frame
thanks to Nanson formula JF−tNdS = GNdS = nds

to ensure this quantity to be
continuous, we discretize F by means
of mapping defined on triangular cells
T c

i with i = 1 . . . ntri , using finite
elements polynomial basis

Ωc

T c
i

using the fact d
dt F = ∇X U, F approximation order has to be one

less than the one obtain with the DG scheme on
1
ρ

, U and E
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for the P1 representation, the chosen finite elements polynomial
basis in a general triangle Tc write

λp(X ) =
1

2|Tc |
[X (Yp+ − Yp−)− Y (Xp+ − Xp−) + Xp+Yp− − Xp−Yp+ ] (6)

we can access to ∇X λp needed in (5)

∇X λp(X ) =
1

2|Tc |

(
Yp+ − Yp−

Xp− − Xp+

)
=

1
|Tc |

LpcNpc (7)

Tc

(X, Y )

LpcN pc

(Xp, Yp)

(Xp+, Yp+) (Xp−, Yp−)

Lp+p−N p+p−

where LpcNpc =
Lp−pNp−p + Lpp+Npp+

2
= −

Lp+p−Np+p−

2

September 2011 François Vilar Cell-centered DG scheme 13 / 30
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the equation (5) rewrites
d
dt

Fc =
1
|Tc |

∑
p∈P(Tc)

Up ⊗ LpcNpc (8)

with this definition, GN continuity is well
preserved at the interface betweens triangles

N pp+

T pp+

p
+

p

Tc

p
−

Gc Lpp+Npp+ =
1
|Tc |

∑
pt∈P(Tc)

Lpt c Lpp+

(
ΦY

p (NX
pp+NY

pt c − NY
pp+NX

pt c)

−ΦX
p (NX

pp+NY
pt c − NY

pp+NX
pt c)

)

=
1
|Tc |

∑
pt∈P(Tc)

(Lpp+T pp+ � Lpt cNpt c)

(
ΦY

p
−ΦX

p

)

=

(
ΦY

p+ − ΦY
p

ΦX
p − ΦX

p+

)
=

(
yp+ − yp
xp − xp+

)
= lpp+npp+ (9)
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Discontinuous Galerkin
{σc

k}k=0...K basis of Porder−1(Ωc)

φc
h(X , t) =

K∑
k=0

φc
k (t)σc

k (X ) approximate of φ(X , t) on Ωc

Taylor basis, k1 + k2 = k

σc
k =

1
k1!k2!

[(
X − Xc

∆Xc
)k1(

Y − Yc

∆Yc
)k2 − 〈(X − Xc

∆Xc
)k1(

Y − Yc

∆Yc
)k2〉]

for the second order scheme, K = 2

σc
0 = 1, σc

1 =
X − Xc

∆Xc
, σc

2 =
Y − Yc

∆Yc

where ∆Xc = Xmax−Xmin
2 and ∆Yc = Ymax−Ymin

2 with Xmax , Ymax ,
Xmin, Ymin the maximum and minimum coordinates in the cell Ωc

September 2011 François Vilar Cell-centered DG scheme 15 / 30
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Density
local variational formulation of (1a) on Ωc∫
Ωc

ρ0 d
dt

(
1
ρ
)σqdΩ =

K∑
k=0

d
dt

(
1
ρ
)k

∫
Ωc

ρ0σqσk dΩ

=

∫
Ωc

σq∇X � (JF−1U)dΩ

= −
∫

Ωc

U � JF−t∇X σqdΩ +

∫
∂Ωc

U � σqJF−tNdL

Gc
i = (JF−t)c

i is constant on T c
i and ∇X σq over Ωc∫

Ωc

ρ0 d
dt

(
1
ρ
)σqdΩ = −

ntri∑
i=1

Gc
i ∇X σq �

∫
T c

i

UdT +

∫
∂Ωc

U � σqGNdL

September 2011 François Vilar Cell-centered DG scheme 16 / 30
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Ωc

ρ0 d
dt

(
1
ρ
)σqdΩ '−

ntri∑
i=1

Gc
i ∇X σq �

∫
T c

i

UdT

+
∑

p∈P(Ωc)

Up �
∫

∂Ωc∩∂Ωpc

σqGNdL︸ ︷︷ ︸
lqpcnq

pc

p
−

p
+

p

Ωpc

Ωc

finally, the equation on the density leads to∫
Ωc

ρ0 d
dt

(
1
ρ
)σqdΩ = −

ntri∑
i=1

Gc
i ∇X σq �

∫
T c

i

UdT +
∑

p∈P(Ωc)

Up � lqpcnq
pc (10)

for the first order with lpcnpc = l0pcn0
pc

mc
d
dt

(
1
ρ
)c =

∫
Ωc

ρ0 d
dt

(
1
ρ
)dΩ =

∑
p∈P(Ωc)

Up � lpcnpc (11)
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Velocity
local variational formulation of (1b) on Ωc leads to∫

Ωc

ρ0 d U
dt

σqdΩ =
ntri∑
i=1

Gc
i ∇X σq

∫
T c

i

PdT −
∑

p∈P(Ωc)

F q
pc (12)

where F q
pc =

∫
∂Ωc∩∂Ωpc

P σqGNdL

for the first order with F pc = F 0
pc

mc
d Uc

dt
=

∫
Ωc

ρ0 d U
dt

dΩ = −
∑

p∈P(Ωc)

F pc (13)

September 2011 François Vilar Cell-centered DG scheme 18 / 30



Introduction 2D Lagrangian hydrodynamics Conclusion

References System and equations Geometric consideration 2nd order Deformation tensor 2nd order DG scheme

Energy
local variational formulation of (1c) on Ωc∫

Ωc

ρ0 d E
dt

σqdΩ =
ntri∑
i=1

Gc
i ∇X σq �

∫
T c

i

P UdT −
∑

p∈P(Ωc)

∫
∂Ωc∩∂Ωpc

P U � σqGNdL (14)

we make the following fundamental assumption P U = P U
finally, the equation on the energy rewrites∫

Ωc

ρ0 d E
dt

σqdΩ =
ntri∑
i=1

Gc
i ∇X σq �

∫
T c

i

P UdT −
∑

p∈P(Ωc)

Up � F q
pc (15)

for the first order

mc
d Ec

dt
=

∫
Ωc

ρ0 d E
dt

dΩ = −
∑

p∈P(Ωc)

Up � F pc (16)
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Entropic analysis
the use of variational formulations and Gibbs formula leads to∫

Ωc

ρ0 T
d S
dt

dΩ =

∫
∂Ωc

[P U + P U − P U − P U] � GNdL

=
∑

f∈F(Ωc)

∫
f
(P − P)(U − U) � GNdL (17)

a sufficient condition to satisfy
∫

Ωc

ρ0 T
d S
dt

dΩ ≥ 0 consists in setting

P(X f ) = Pc(X f )− Zc (U(X f )− Uc(X f )) �
GN
‖GN‖

(18)

where X f is a point on the face f and Zc a positive constant with a
physical dimension of a density times a velocity

September 2011 François Vilar Cell-centered DG scheme 20 / 30
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using this expression to calculate F q
pc leads to

F q
pc =

∫
∂Ωc∩∂Ωpc

P σqJF−tNdL

=

∫
∂Ωc∩∂Ωpc

Pc σqGNdL−
∫

∂Ωc∩∂Ωpc

Zc (U − Uc) �
GN
‖GN‖

σqGNdL

' Pc(p)

∫
∂Ωc∩∂Ωpc

σqGNdL

−
∫

∂Ωc∩∂Ωpc

Zc (Up − Uc(p)) �
GN
‖GN‖

σqGNdL

finally, F q
pc writes

F q
pc = Pc(p) lqpcnq

pc −Mq
pc (Up − Uc(p)) (19)

September 2011 François Vilar Cell-centered DG scheme 21 / 30
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Mq
pc are defined as Mq

pc = Zc

∫
∂Ωc∩∂Ωpc

GN
‖GN‖

⊗GN σqdL

= Zc (lq,+
pc n+

pc ⊗ n+
pc + lq,−

pc n−pc ⊗ n−pc)
Ω
+

pc

Ω
−

pc

p
−

p
+

p

Ωc
where lq,±

pc =

∫
∂Ωc∩∂Ω±pc

σqdL

M0
pc = Mpc = Zc (l+pcn+

pc ⊗ n+
pc + l−pcn−pc ⊗ n−pc) is semi definite

positive matrix with a physical dimension of a density times a
velocity
to be conservative in total energy over the whole domain,∑
c∈C(p)

F pc = 0 and consequently

(
∑

c∈C(p)

Mpc) Up =
∑

c∈C(p)

[Pc(p) lpcnpc + Mpc Uc(p)] (20)
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Sedov problem on a Cartesian grid made of 900 cells and a polygonal
one made of 775 cells: density map with limitation
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Gresho problem on a polar grid made of 720 cells: pressure map with
limitation
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without limitation with limitation
h qh

L2
qh

L∞ qh
L2

qh
L∞

1
20 1.74 1.35 2.05 1.54
1

40 1.85 1.85 2.11 1.81
1

80 1.42 2.34 1.58 1.54

Table: rate of convergence computed for second order DG scheme

Green Muscl Discontinuous Galerkin
h Eh

L2
Eh

L∞ Eh
L2

Eh
L∞

1
20 1.854E-2 6.596E-2 1.120E-2 3.678E-2
1

40 6.500E-3 2.452E-2 3.356E-3 1.446E-2
1

80 1.817E-3 9.122E-3 9.314E-4 4.019E-3
1

160 4.944E-4 2.555E-3 3.471E-4 7.959E-4

Table: numerical errors computed at t=0.6s on the pressure
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