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1D scalar conservation law

ou O0F(u)
51 e 0, (x,t) € wx [0, T]
@ u(x,0) = up(x), XEw

(k + 1) order discretization

@ {w;}; apartition of w, such that

wi = [X_1, X 1]
0 0=P<t'<...<tN=

T a partition of the temporal domain [0, T]
@ up(x,t) the numerical solution, such that up,, = u}, € P¥(w;)

k+1

uh(x, 1) Z Ui (1) om(x)

Local variational formulation on w;

/ au”wd / F(ul) awdxf[]-'wr'+

: Vi) € PH(w)
M 1L
2
© Fiuy = F (Uh(Xiug 1), U (x5, )
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Introduction

Subcell resolution of DG scheme
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Figure : Linear advection of composite signal after 4 periods
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Introduction Spurious oscillations - Gibbs phenomenon

Gibbs phenomenon

@ High-order schemes leads to spurious oscillations near discontinuities
@ Leads potentially to nonlinear instability, non-admissible solution, crash
@ Vast literature of how prevent this phenomenon to happen:

—> a priori and a posteriori limitations

@ Artificial viscosity
@ Flux limitation
@ Slope/moment limiter

@ Hierarchical limiter
@ ENO/WENO limiter

A posteriori limitation

@ MOOD (“Multi-dimensional Optimal Order Detection”)
@ Subcell finite volume limitation
@ Subcell limitation through flux reconstruction
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Introduction Objectives

Admissible numerical solution

@ Maximum principle / positivity preserving
@ Prevent the code from crashing (for instance avoiding NaN)
@ Ensure the conservation of the scheme

Spurious oscillations

@ Discrete maximum principle
@ Relaxing condition for smooth extrema

@ Retain as much as possible the subcell resolution of the DG scheme
@ Minimize the number of subcell solutions to recompute

Frangois Vilar (IMAG) Subcell limitation through flux reconstruction june 12th, 2018 4/37



s a subcell finite volume Flux reconstruction

e DG as a subcell finite volume
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DG as a subcell finite volume

@ Rewrite DG scheme as a specific finite volume scheme on subcells
@ Exhibit the corresponding subcell numerical fluxes: reconstructed flux

Local variational formulation

8 U;'.' . i 8’(/) X;+% K ]
° /w,- o zpdx—/wf F(up) 5 dx [ﬂbh_é, Ve € PK(w;)
@ Substitute F(u}) with £} € Pk+(w;) (collocated or L, projection)
ouy . _ [ 9OF ,- g ki
°/w, & zpdx_/w hyax+ [(F] ]—')14)(/;, Vi € PK(wy)
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DG as a subcell finite volume Flux reconstruction

Subresolution basis functions

@ w; is subdivided in k + 1 subcells S!, = [Xm_1, Xm]
@ Let us introduce the k + 1 basis functions {¢m}m such that Vi € PX(w;)

¢mwdx:/ Y dx, vm=1,....k+1
Sh

wj

@ Let us define ¢, = 1 dx the subcell mean value

1Sl Jsi,

Local variational formulation

6U;‘7 . aF,’; 7 X,Jr%
[ ot omax=— | Ghomax+ [(Fh—fwm}xl_il
2
ot 1 e , X1
=—— | |F - Fi — e
* ot T sy <[ e, lon (7 f”x,.;
ot 1 /=~ = .
° 0tm = _|3fn| (F,’n = F,’,H) Subcell finite volume
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DG as a subcell finite volume Flux reconstruction

_ {(bm (Fi —F) ]X”

X,

i—

o Fh—Fiy = [FH]L

Xm—1

, vm=1,...,k

ol M=

o Fi=F_, and Fj,, =7F

1
2 I+3

Reconstructed flux

o Fly= Fj(%m) — C™) (Fitxi_y) = Fiy) — €0 (Fixirg) — Firy)

i+ i+ i+3
k+1 m
© G = 3 dp(xiy) and  CT =3 dp(xi,y)
p=m+1 p=1

) i1
o Let B € R be definedas B — (—1)+ k- D(K+)):

- (M2(k+1-))!
~ Xm— X;i_1
° gmzu, vm=0,....,k+1
Xi+% - Xi—%
~ ~ t
0 " =1 (G E) B and G = Cl
2 +3 2
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Subcell finite volume equivalent to DG

8u;, _ i 81/1 Xi+%
T wdx/wa(uh)ade—[}'zb} -

X,
i—

[
M T (Fn=Foa):

o Fhy = Fjm) — C) (Fi(x

Vi € ]P’k(w,-)

N

Ym=1,... k+1

-1) —f,;;> - C,(fi (Ff’;(m;) —7/‘+;>

Reconstructed flux taking into account flux jumps
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Flux reconstruction / CPR

@ The correction functions defined as
k+1 k+1

gis(x) = ZC m(x) and  grs(x ZC/(E

are nothing but the right and left Radau P* polynomials

[\ H. T. HUYNH, A Flux Reconstruction Approach to High-Order Schemes
Including Discontinuous Galerkin Methods. 18th AIAA Computational
Fluid Dynamics Conference Miami, 2007.

4 Z.J. WANG and H. GAO, A unifying lifting collocation penalty formulation
including the discontinuous Galerkin, spectral volume/difference methods
for conservation laws on mixed grids. JCP, 2009.

Subcell finite volume

@ Reconstructed flux is used as a numerical flux for subcell FV schemes
@ This demonstration is not restricted to the flux collocation case
@ The correction terms are very simple and explicitly defined
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A posterit ubcell limitation

e A posteriori subcell limitation
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A posteriori subcell limitation Projection

Projection on subcells of RKDG solution

k+1

e u,=> "% ulon is uniquely defined by its k + 1 submean values
. . , 1
@ Introducing the matrix IT defined as myp = I opdx, then
ml| J Sk,

. N . N
in in _ (N —i,n
1'I(u1 ,...,uk+1> _(u1 "'-’Uk+1)

S
(SN
-

DO —

830 e =~ =~ — -

k+1
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A posteriori subcell limitation Detection

@ We assume that, for each cell, the {T""},, are admissible
e Compute a candidate solution u™" from u} through unlimited DG

@ For each subcell, check if the submean values {z;""'},, are ok

Physical admissibility detection (PAD)

@ Check if U,";,”“ lies in an convex physical admissible set (maximum
principle for SCL, positivity of the pressure and density for Euler, . ..)

@ Check if there is any NaN values

Numerical admissibility detection (NAD)

@ Discrete maximum principle DMP on submean values:

mln(u' 1 u}D ,u,;“ M < T < max(U, 1 up ,U,QH ™
D

@ This criterion needs to be relaxed to preserve smooth extrema
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Limited reconstructed flux
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Figure : Correction of the reconstructed flux
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Flowchart

@ Project u™" to get the submean values T,
@ Check T/ ”+‘ through PAD and NAD

Q If T™" is admissible go further in time, otherwise modify the
corresponding reconstructed flux values

Fi_y=F@.,.uy" and Fi=F@y u.,)

m—1>

© Through the corrected reconstructed flux, recompute the submean values
for tagged subcells and their first neighbors

@ Return to point 2

Conclusion

@ The limitation only affects the DG solution at the subcell scale
@ The limited scheme is conservative at the subcell level
@ In practice, few submean values need to be recomputed
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Numerical results 1D scalar conservation laws

e Numerical results
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Numerical results 1D scalar conservation laws

Linear advection of a square signal after 1 period

exact solution
9th order limited DG —e—
1r corrected subcells o
DG cell boundaries =
0.8 |- 1
0.6 |- 1
04 |- 1
0.2 |- 1
0 oo
0 0.2 0.4 0.6 0.8 1
Figure : 9th order limited DG: NAD criterion

Francois Vilar (IMAG) Subcell limitation through flux reconstruction june 12‘h, 2018 14 /37



Numerical results 1D scalar conservation laws

Linear advection of a square signal after 1 period

exact solution
9th order limited DG —e—
1 > corrected subcells o
DG cell boundaries =
0.8 1
0.6 1
0.4 i
0.2 1
0 -2
0 0.2 0.4 0.6 0.8 1
Figure : 9th order limited DG on 10 cells: NAD and PAD criteria
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Numerical results 1D scalar conservation laws

Linear advection of a square signal after 1 period

exact solution
9th order limited DG —e—
1r corrected subcells o
DG cell boundaries =
0.8 |- 1
0.6 |- 1
04 |- 1
0.2 |- 1
0
0 0.2 0.4 0.6 0.8 1
Figure : 9th order limited DG on 10 cells: subcell DMP
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Numerical results 1D scalar conservation laws

Linear advection of a square signal after 1 period

exact solution
9th order limited DG —e—
1 corrected subcells o
DG cell boundaries =
0.8 1
0.6 1
0.4 i
0.2 1
0
0 0.2 0.4 0.6 0.8 1
Figure : 9th order limited DG on 10 cells: subcell DMP + 2nd order correction

vy
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Numerical results 1D scalar conservation laws

Linear advection of a composite signal after 4 periods

exact solution
9th order limited DG —e—
1r corracted subcells ~ ® b
DG cﬁl boundaries =
0.8 - i
0.6 - f' i
04 - B
0.2 |- i
0 I
-1 -(;.5 0 0‘.5 1
Figure : 9th order limited DG after 4 periods on 30 cells
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Numerical results 1D scalar conservation laws

Linear advection of a composite signal after 4 periods

exact solution
9th order limited DG —e—
1r corrgcted subcells — © b
DG CHI boundaries =
0.8 - i
0.6 - % 1
04 | 1
0.2 | i
| 4k
-1 -(;.5 0 0‘.5 1
Figure : 9th order limited DG after 4 periods on 30 cells: subcell DMP
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Numerical results 1D scalar conservation laws

Linear advection of a composite signal after 4 periods

exact solution
9th order limited DG —e—

1 corrected subcells ~ ® b
DG cﬁl boundaries =
0.8 1
0.6 1
0.4 1
0.2 1
0 J

-1 -0.5 0 0.5 1

Figure : 9th order limited DG after 4 periods on 30 cells: subcell DMP + 2nd
order correction
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Numerical results 1D scalar conservation laws

1 exact solution b
9th order limited DG —e—
DG cell boundaries =

0.5

-0.5

.8 1

(;.2 (;.4 0[6 0
S

Figure : 9th order limited DG on 10 cells for t; = 0.7
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Numerical results 1D scalar

0.6 - " exact solution E
9th order limited DG —e—
DG cell boundaries =
04 E
0.2 |- i
0
-0.2 + a
04 e
06 [ E
-0.8 - i
-1+ ) ) ‘ ‘ ‘ ‘ a
0.6 0.4 -0.2 0 0.2 0.4 0.6 0.8 1
(=)ee(+)
Figure : 9th order limited DG on 15 cells for t; = 1.2
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Numerical results 2D scalar conservation laws

2D grid and subgrid
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(a) Grid (b) Subgrid
Figure : 5x5 Cartesian grid and corresponding subgrid for a 6th order DG

scheme
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Linear advection of a square signal after 1 period

t
0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(c) Solution map (d) Solution profile

Figure : 6th order limited DG on a 15x15 Cartesian mesh
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Numerical results 2D scalar conservation laws

Linear advection of a square signal after 1 period

L “'"\ ‘ exa‘(_:t .solution‘ —
6th limited DG —e—
0.8 |- 1
0.6 - 1
0.4 i
0.2 |- i
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Figure : 6th order limited DG on a 15x15 Cartesian mesh
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Numerical results 2D scalar conservation laws

Rotation of a composite signal after 1 period

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(e) Initial solution (f) Final solution

Figure : 6th order limited DG on a 15x15 Cartesian mesh
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Numerical results 2D scalar conservation laws

Rotation of a composite signal after 1 period

1 T T T T T T

1 T T T

T T - T - T ; T
exact solution —e— fotany exact solution’ —e—
6th limited DG —=— N \ 6th limited DG —o—
09 1 | \ f |
| 1 \
08 B 08 | o \
| | \
07 4 If )|
|
0s 06
05
| |
o | 04 F | |
I - i
03 f 9 | || |
|
-
02 4 02 | | “ It
H | |
01 B “ (4| V“
4 1
0 . . . o d . 0 n 2o
0 0.1 0.2 03 04 05 06 0.7 08 09 1 0 0.1 02 03 04 0.5 06 0.7 08 0.9 1

(g) Solution profile for y = 0.25 (h) Solution profile for y = 0.75

Figure : 6th order limited DG on a 15x15 Cartesian mesh
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Numerical results 2D scalar conservation laws

Rotation of a composite signal after 1 period: x = 0.25

0.5

exaCt solution' —e—
6th limited DG —e—
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0.4

0.3

0.25 -

0.15 -
01

0.05 -

Figure : 6th order limited DG on a 15x15 Cartesian mesh
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Numerical results 2D scalar conservation laws

Burgers equation with uy(x, y) = sin(27 (x + y))

I
07 04 07 H B 05
I [
0.6 02 0.6 =:
1
0.5 0 0.5 == 0
0.4 0.2
0.3 0.4 -0.5
0.2 = 0.6 0.2 =
HEZ I
0.1 ;;; 0.8 0.1 !
T I
, [EEEHES , HEH
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(i) Solution at t = 0.007 (j) Solution att = 0.25

Figure : 6th order unlimited DG on a 10x10 Cartesian mesh
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Numerical results 2D scalar conservation laws

Burgers equation with up(x, y) = sin

04

..-.. ORE  RRERGE CWE

) Solution map () Detected subcells

Figure : 6th order limited DG on a 10x10 Cartesian mesh until t = 0.5

Frangois Vilar (IMAG) Subcell limitation through flux reconstruction june 12m, 2018 30/37



Numerical results 2D scalar conservation laws

Burgers equation with up(x, y) =sin(2r (x + y)) att =0.5

exact solution
6th limited DG —e—
04 | R
0.2 - T
0
02 i
04 | E
| | | | | | | | |

0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2

Figure : 6th order limited DG density profile on a 10x10 Cartesian mesh
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Numerical results 2D scalar conservation laws

Burgers equation with composite signal

1 1
09 0.9 lus
0.8 0.8 04
0.7 0.7
402
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0.4 0.4 == 1
04
0.3 0.3
02 02 08
0.1 0.1 04
0 = - 0 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(m) Initial solution (n) Solution att = 0.5
Figure : 6th order limited DG on a 10x10 Cartesian mesh
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Numerical results 1D Euler system

Sod shock tube problem

11 T T T T T T T T
exact solution

athorserimiod DG o 9th order limited DG —e—

19 DG cell boundaries = | 1 S DG cell boundaries =

09 -
08 - 08
07
06 06 -
05
04 04
03

02 02|

01 L L L L ' L L L L
0 02 04 06 08 1 [ 02 04 06 08 1

(o) PAD + NAD (p) PAD + subDMP with 2nd order correction

Figure : 9th order limited DG on 10 cells

Francois Vilar (IMAG) Subcell limitation through flux reconstruction june 12‘h, 2018 33/37



Numerical results 1D Euler system

exact solution
9th order limited DG —e—
1 DG cell boundaries =

0.6 -

05

04

03 -

02 |

0.1

L L r
0 0.2 0.4 0.6 0.8 1

Figure : 9th order limited DG on 10 cells
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Numerical results 1D Euler system

Shock acoustic-wave interaction problem

5 T

referenti‘al solution
7th order limited DG + subDMP —e—

7th order limited DG
4.5 DG cell boundaries = B b
Y J\ L
41 Q i 3t a e

-----------J . ,‘f,"? ! ‘{

3| i
25| ’ ]
2L i
b
| ,
| N LR ]
-
i | F 8 2
g -l. LN ]
05 L L L L
-4 2 0 2 4

Figure : 7th order limited DG on 50 cells
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Numerical results 1D Euler system

ock acoustic-wave interaction problem

4.1 T T 4.8 T T T T T T
referental solution referential solufion
7ih order hmuea DG + SUbDMP —=— 7 order iied DG « subbM
4.05 - th order hml(eﬂ DG order Ilrm(ed DG
/ X TS e bouncares = Sy

2 15 -1 05 0

(9) Zoom on [—2, 0] (r) Zoom on [0.5,2.3]

Figure : 7th order limited DG on 50 cells
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Article in preparation

@ F. VILAR, A Posteriori Correction of High-Order Discontinuous Galerkin
Scheme through Subcell Finite Volume Formulation and Flux
Reconstruction. JCP, 2018.

High-order Lagrangian hydrodynamics

[4 F. VILAR, C.-W. SHU AND P.-H. MAIRE, Positivity-preserving
cell-centered Lagrangian schemes for multi-material compressible flows:
Form first-order to high-orders. Part II: The 2D case. JCP, 2016.

[@ F. VILAR, C.-W. SHU AND P.-H. MAIRE, Positivity-preserving
cell-centered Lagrangian schemes for multi-material compressible flows:
Form first-order to high-orders. Part I: The 1D case. JCP, 2016.

[3] F. VILAR, P.-H. MAIRE AND R. ABGRALL, A discontinuous Galerkin
discretization for solving the two-dimensional gas dynamics equations
written under total lagrangian formulation on general unstructured grids.
JCP, 2014.
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Relaxation of the DMP

——n+1 ) T T
Q Vv, = 6XU,- - AQX' 8xxui
. ——n+1 =—n+1
° Vmin\max = m|n\max (aXU, 76Xui—1 )
1 v —a un+1
—n+ 9 - i
olIf (vp>0ku; ) Then « = m'”(1vmax—7x,;+1)
VR—axul'
1 v —a n+1
—n+ . in — i
olf (v <du ') Then a;= mln(17M7)(r1+1)
— OxU;
—n+1 ———n+1
@ Vg = 8Xu, A2x, 8XXU['
i n+1
@ Vinin\ max = mln\max(ax ax Ui )
7 T n+1
N1 :
ol (VR > 3in ) Then aR = m|n(1, max—Xn-H)
VR - 8)(
1
——n+1 . Vi Oxu
olf (va<d) Then ag=min(1, m'”ixm)
VR - ax
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Relaxation of the DMP

@ a = min(a, aR)

@ If (w=1) Then DMP is relaxed

Hierarchical limiter

iy

i | |
I I I I
I I I 1
. 3 Tr. 1 s il 5o 3
=5 =% i+5 i+

—n+1 —n+1
@ Vp(x) =0xU;  + (X — Xj) OxxU;

[3 M. YANG and Z.J. WANG, A parameter-free generalized moment limiter
for high-order methods on unstructured grids. AAMM., 2009.

[3 D. KuzMIN, A vertex-based hierarchical slope limiter for p-adaptive
discontinuous Galerkin methods. J. of Comp. and Appl. Math., 2010.
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Numerical results References

Initial solution on x € [0, 1]

@ up(x) = sin(27mx)
@ Periodic boundary conditions

1
exa‘cl solution

9th order DG —o—
0.8 DG cell boundaries = |

06
0.4
0.2

0

0.2

0.4

06

-0.8

A L L I
0 0.2 0.4 0.6 0.8 1

Figure : Linear advection with a 9th DG scheme and 5 cells after 1 period
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Numerical results References

[ 1 Ly H Lo |
EL |4, E, | a.
8.07E-11 | 9.00 || 8.97E-11 | 9.00

1.58E-13 | 9.00 || 1.75E-13 | 9.00
3.08E-16 s 3.42E-16 =

B -B-B - =

Table: Convergence rates for the linear advection case for a 9th order DG scheme
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Numerical results References

Linear advection of a are signal after 1 period

exa‘ct solution

FR limitation —e—

1 > subcell FV limitation 7
DG cell boundaries =
0.8 |- 1
|
0.6 b q
1

0.4 I g
0.2 |- 1

Om -----m------®8---- e e
0 0.2 0.4 0.6 0.8 1

Figure : Comparison between flux reconstruction limitation and subcell finite
volume limitation
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Numerical results References

Linear advection of a are signal after 10 periods

T
exact solution
FR limitation —e—
1r - subcell FV limitation

DG cell boundaries =

0.8 - 1

|

04 1
0.2 - 1
0 - W -----®-- - W ---- W -
L L L L
0 0.2 0.4 0.6 0.8 1

Figure : Comparison between flux reconstruction limitation and subcell finite
volume limitation
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Numerical results References

Linear advection of a are signal after 50 periods

exa‘ct solution

FR limitation —e—

1r subcell FV limitation T
DG cell boundaries =
0.8 |- 1
| L

0.6 |- 1
04 |- 1
0.2 |- 1

0 R e R e o R R
0 0.2 0.4 0.6 0.8 1

Figure : Comparison between flux reconstruction limitation and subcell finite
volume limitation
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Numerical results References

Initial solution on (x, y) € [0, 1]

@ Up(x,y) =sin(2r(x + y))
@ Periodic boundary conditions

exact solution q
6 limited DG —e—

07 05

-0.5

0 02 04 0.6 08 1 0 0.2 0.4 0.6 08 1 12 14 16 18 2

(s) Solution map () Solution profile

Figure : Linear advection with a 6th DG scheme and 5x5 grid after 1 period
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Convergence rates
Lo |

[ 1 Ly H
EL |4, E, | a,
2.10E-6 | 6.23 || 2.86E-6 | 6.24
2.79E-8 | 6.00 || 3.77E-8 | 6.00

3.36E-10 = 5.91E-10 =

Table: Convergence rates for the linear advection case for a 6th order DG scheme

N|-pl-oi—~ =
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Numerical results References

Initial solution on x € [0, 1] for v = 3
@ po(x) =1+0.9999999sin(7x), Up(x) =0, po(x) = (po(x))”
@ Periodic boundary conditions

1.8
exact solul‘ion
5th order limited DG —e—
16 DG cell boundaries =

0.8

0.6

0.4

0.2

0 I
-1 -0.5 0 05 1

Figure : Smooth flow problem with 5th DG scheme and 10 cells at { = 0.1
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Numerical results References

Conve rgence rates

L L | Ly |
h E | E, | a,
% 1.48E-5 | 4.35 || 2.02E-5 | 4.18
% 9.09E-7 | 4.88 || 1.38E-6 | 4.87
o || 3.09E-8 | 4.95 || 4.73E-8 | 4.86
11@ 1.00E-9 - 1.63E-9 -
Table: Convergence rates on the pressure for the Euler equation for a 5th order DG
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Numerical results References

uble rarefaction problem

1 1 o= T T T T T T e
‘ TR == / ‘\\ R /i'
09 [ DG cell boundaries ~ m 1 s 3rd order limited DG |
A§ J
08 B
08 4
07 A
06 - B 0.7 B
05 q 06| 4
o4r 1 05 [ —
03 A
04 | 4
02+ -
01 | 1 0.3 - 4
0 0.2 L L
0 1 0 0.1 0.9 1
(u) Density (v) Internal energy
Figure : 9th order limited DG on 20 cells
w
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Numerical results References

blanc shock tube problem

0.25 T T
exact solution
7th order limited DG —e—
3rd order limited DG
0.2 | E 7 ,
0.15 | ,
0.1 _ i
0.05 |- Ty, i
S
S
0 L L L L L L L
0 1 2 8 4 5 6 7 8 9

Figure : 3rd order vs 7th order limited DG on 100 cells
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Numerical results References

Shock acoustic-wave interaction problem

5 T T
referential solution
7th order limited DG —e—
3rd order limited DG
4.5 DG cell boundaries = b

4,;,..:1!"‘"‘?‘ mﬁ\; Vﬁv ﬂ ﬂ 7

3L |
Z8 |= b
ol |
18 |= 1
L LR
et Fat
1k L \ /7 L
“ad LY
0‘5 L L L L
-4 2 0 2 4

Figure : 3rd order vs 7th order limited DG on 50 cells
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Numerical results References

ock acoustic-wave interaction problem

41 T T T 4.8 T T T T T T T T T
referental solution referentil solution
7ih order [mited DG —e— 7ih order Imited DG —»—
4.05 - 3rd order limited DG 3rd order limited DG
» DG cell boundaries L DG cell boundarf 7
4t ¢ A\
|
395 | |
|
|
39 | |

355 L L L 3 L L L L L L L L L
2 15 -1 05

(w) Zoom on [—2,0] (x) Zoom on [0.5,2.3]

Figure : 3rd order vs 7th order limited DG on 50 cells
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