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Université de Montpellier

March 19, 2019

François Vilar (IMAG) Subcell correction through flux reconstruction March 19, 2019



1 Introduction

2 DG as a subcell finite volume

3 A posteriori subcell correction

4 Numerical results

5 Conclusion

François Vilar (IMAG) Subcell correction through flux reconstruction March 19, 2019 0 / 54



Introduction Discontinuous Galerkin scheme

History
Introduced by Reed and Hill in 1973 in the frame of the neutron transport
Major development and improvements by B. Cockburn and C.-W. Shu in
a series of seminal papers

Procedure
Local variational formulation
Piecewise polynomial approximation of the solution in the cells
Choice of the numerical fluxes
Time integration

Advantages
Natural extension of Finite Volume method
Excellent analytical properties (L2 stability, hp−adaptivity, . . . )
Extremely high accuracy (superconvergent for scalar conservation laws)
Compact stencil (involve only face neighboring cells)
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Introduction Discontinuous Galerkin scheme

1D scalar conservation law
∂ u
∂t

+
∂ F (u)
∂x

= 0, (x , t) ∈ ω × [0,T ]

u(x ,0) = u0(x), x ∈ ω

(k + 1)th order discretization
{ωi}i a partition of ω, such that ωi = [xi− 1

2
, xi+ 1

2
]

0 = t0 < t1 < · · · < tN = T a partition of the temporal domain [0,T ]

uh(x , t) the numerical solution, such that uh|ωi = ui
h ∈ Pk (ωi)

ui
h(x , t) =

k+1∑

m=1

ui
m(t)σm(x)

{σm}m a basis of Pk (ωi)

Local variational formulation on ωi∫

ωi

(
∂ u
∂t

+
∂ F (u)
∂x

)
ψ dx = 0 with ψ(x) a test function
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Introduction Discontinuous Galerkin scheme

Integration by parts
∫

ωi

∂ u
∂t
ψ dx −

∫

ωi

F (u)
∂ ψ

∂x
dx +

[
F (u)ψ

]xi+ 1
2

xi− 1
2

= 0

Approximated solution
Substitute u by ui

h, and restrict ψ to the polynomial space Pk (ωi)
∫∫∫

ωi

∂ ui
h

∂t
ψ dx =

∫∫∫

ωi

F(ui
h)
∂ ψ

∂x
dx −

[
F ψ

]xi+ 1
2

xi− 1
2

, ∀ψ ∈ Pk (ωi)

k+1∑

m=1

∂ ui
m

∂t

∫

ωi

σm σp dx =

∫

ωi

F (ui
h)
∂ σp

∂x
dx −

[
F σp

]xi+ 1
2

xi− 1
2

, ∀p ∈ [[1, k + 1]]

Numerical flux

Fi+ 1
2
= F

(
ui

h(xi+ 1
2
, t),ui+1

h (xi+ 1
2
, t)
)

F(u, v) = F (u) + F (v)
2

− γ(u, v)
2

(v − u)

γ(u, v) = max(|F ′(u)|, |F ′(v)|) Local Lax-Friedrichs
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Introduction Discontinuous Galerkin scheme

Subcell resolution of DG scheme
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Figure : Linear advection of composite signal after 4 periods
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Introduction Discontinuous Galerkin scheme

Subcell resolution of DG scheme
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Introduction Spurious oscillations - Gibbs phenomenon

Gibbs phenomenon
High-order schemes leads to spurious oscillations near discontinuities
Leads potentially to nonlinear instability, non-admissible solution, crash
Vast literature of how prevent this phenomenon to happen:

=⇒ a priori and a posteriori limitations

A priori limitation
Artificial viscosity
Flux limitation
Slope/moment limiter
Hierarchical limiter
ENO/WENO limiter

A posteriori limitation
MOOD (“Multi-dimensional Optimal Order Detection”)
Subcell finite volume limitation
Subcell limitation through flux reconstruction
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Introduction Objectives

Admissible numerical solution
Maximum principle / positivity preserving
Prevent the code from crashing (for instance avoiding NaN)
Ensure the conservation of the scheme

Spurious oscillations
Discrete maximum principle
Relaxing condition for smooth extrema

Accuracy
Retain as much as possible the subcell resolution of the DG scheme
Minimize the number of subcell solutions to recompute

Modify locally, at the subcell level, the numerical solution without
impacting the solution elsewhere in the cell
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DG as a subcell finite volume Flux reconstruction
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DG as a subcell finite volume Flux reconstruction

DG as a subcell finite volume
Rewrite DG scheme as a specific finite volume scheme on subcells
Exhibit the corresponding subcell numerical fluxes: reconstructed flux

Local variational formulation
∫

ωi

∂ ui
h

∂t
ψ dx =

∫

ωi

F (ui
h)
∂ ψ

∂x
dx −

[
F ψ

]xi+ 1
2

xi− 1
2

, ∀ψ ∈ Pk (ωi)

Substitute F (ui
h) with F i

h ∈ Pk+1(ωi) (collocated or L2 projection)
∫

ωi

∂ ui
h

∂t
ψ dx = −

∫

ωi

∂ F i
h

∂x
ψ dx +

[
(F i

h −F)ψ
]xi+ 1

2

xi− 1
2

, ∀ψ ∈ Pk (ωi)

Subcell decomposition through k + 2 flux points
xi−1

2
xi+1

2

x̃k+3
2

x̃1
2
x̃3

2
x̃k+1

2
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DG as a subcell finite volume Flux reconstruction

Subdivision and definition
ωi is subdivided in k + 1 subcells Si

m = [x̃m− 1
2
, x̃m+ 1

2
]

Let us define ψm =
1
|Si

m|

∫

Si
m

ψ dx the subcell mean value

Subresolution basis functions
Let us introduce the k + 1 basis functions {φm}m such that ∀ψ ∈ Pk (ωi)

∫

ωi

φm ψ dx =

∫

Si
m

ψ dx , ∀m = 1, . . . , k + 1,

k+1∑

m=1

φm(x) = 1

These particular functions can be seen as the L2 projection of
the indicator functions 1m(x) onto Pk (ωi)
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DG as a subcell finite volume Flux reconstruction

Subcell finite volume scheme
∫

ωi

∂ ui
h

∂t
φm dx = −

∫

ωi

∂ F i
h

∂x
φm dx +

[
(F i

h −F)φm

]xi+ 1
2

xi− 1
2

|Si
m|
∂ ui

m

∂t
= −

∫

Si
m

∂ F i
h

∂x
dx +

[
(F i

h −F)φm

]xi+ 1
2

xi− 1
2

∂ ui
m

∂t
= − 1
|Si

m|

([
F i

h

]x̃m+ 1
2

x̃m− 1
2

−
[
φm

(
F i

h −F
) ]xi+ 1

2

xi− 1
2

)

∂ ui
m

∂t
= − 1
|Si

m|
(

F̂ i
m+ 1

2
− F̂ i

m− 1
2

)
Subcell finite volume

Linear system

F̂ i
m+ 1

2
− F̂ i

m− 1
2
=
[
F i

h

]x̃m+ 1
2

x̃m− 1
2

−
[
φm
(
F i

h −F
) ]xi+ 1

2

xi− 1
2

, ∀m ∈ [[1, k + 1]]

F̂ i
1
2
= Fi− 1

2
and F̂ i

k+ 3
2
= Fi+ 1

2
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DG as a subcell finite volume Flux reconstruction

Reconstructed flux

F̂ i
m+ 1

2
= F i

h(x̃m+ 1
2
)− C i− 1

2

m+ 1
2

(
F i

h(xi− 1
2
)−Fi− 1

2

)
− C i+ 1

2

m+ 1
2

(
F i

h(xi+ 1
2
)−Fi+ 1

2

)

C i− 1
2

m+ 1
2
=

k+1∑

p=m+1

φp(xi− 1
2
) and C i+ 1

2

m+ 1
2
=

m∑

p=1

φp(xi+ 1
2
)

Correction terms for symmetric distribution of {x̃m+ 1
2
}m

Let B ∈ Rk+1 be defined as Bj = (−1)j+1
(

k + j
j

)(
k + 1

j

)

ξ̃m+ 1
2
=

x̃m+ 1
2
−xi− 1

2
xi+ 1

2
−xi− 1

2

, ∀m = 0, . . . , k + 1

C i− 1
2

m+ 1
2
= 1−

(
ξ̃m+ 1

2
, . . . , (ξ̃m+ 1

2
)k+1

)t
� B and C i+ 1

2

m+ 1
2
= C i− 1

2

k+ 3
2−m
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DG as a subcell finite volume Flux reconstruction

Subcell finite volume equivalent to DG
∫

ωi

∂ ui
h

∂t
ψ dx =

∫

ωi

F (ui
h)
∂ ψ

∂x
dx −

[
F ψ

]xi+ 1
2

xi− 1
2

, ∀ψ ∈ Pk (ωi)

∂ ui
m

∂t
= − 1
|Si

m|
(

F̂ i
m+ 1

2
− F̂ i

m− 1
2

)
, ∀m = 1, . . . , k + 1

F̂ i
m+ 1

2
= F i

h(x̃m+ 1
2
)− C i− 1

2

m+ 1
2

(
F i

h(xi− 1
2
)−Fi− 1

2

)
− C i+ 1

2

m+ 1
2

(
F i

h(xi+ 1
2
)−Fi+ 1

2

)

Reconstructed flux taking into account flux jumps

xi−1
2

xi+1
2

x̃m+1
2

x̃m−1
2

x̃3
2

x̃k+3
2

x̃1
2

Fi+1
2

F i
h(x̃k+3

2
)

Fi−1
2

F i
h(x̃3

2
)

F̂ i
m+1

2

F i
h(x̃1

2
) F̂ i

3
2

F̂ i
m−1

2
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DG as a subcell finite volume Flux reconstruction

Flux reconstruction / CPR
The correction functions defined as

gLB(x) =
k+1∑

m=0

C(m)

i− 1
2

Lm(x) and gRB(x) =
k+1∑

m=0

C(m)

i+ 1
2

Lm(x)

are nothing but the right and left Radau Pk polynomials

H. T. HUYNH, A Flux Reconstruction Approach to High-Order Schemes
Including Discontinuous Galerkin Methods. 18th AIAA Computational
Fluid Dynamics Conference Miami, 2007.

Z.J. WANG and H. GAO, A unifying lifting collocation penalty formulation
including the discontinuous Galerkin, spectral volume/difference methods
for conservation laws on mixed grids. JCP, 2009.

Subcell finite volume
Reconstructed flux is used as a numerical flux for subcell FV schemes
This demonstration is not restricted to the flux collocation case
The correction terms are very simple and explicitly defined
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A posteriori subcell correction
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A posteriori subcell correction Projection

RKDG scheme
SSP Runge-Kutta: convex combinations of first-order forward Euler
For sake of clarity, we focus on forward Euler time stepping

Projection on subcells of RKDG solution

ui,n
h (x) =

k+1∑

m=1

ui,n
m σm(x) is uniquely defined by its k + 1 submean values

Introducing the matrix Π defined as πmp =
1
|Si

m|

∫

Si
m

σp dx , then

Π




ui,n
1
...

ui,n
k+1


 =




u i,n
1
...

u i,n
k+1



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A posteriori subcell correction Projection

Projection

x̃k+3
2

xi+1
2

xi−1
2

u
i,n
h

(x)

u i,n
1

u i,n
2

x̃1
2

x̃3
2

x̃k+1
2

u i,n
k+1

Figure : Polynomial solution and its associated submean values
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A posteriori subcell correction Detection

Set up

We assume that, for each cell, the {u i,n
m }m are admissible

Compute a candidate solution un+1
h from un

h through uncorrected DG

For each subcell, check if the submean values {u i,n+1
m }m are ok

Physical admissibility detection (PAD)

Check if u i,n+1
m lies in an convex physical admissible set (maximum

principle for SCL, positivity of the pressure and density for Euler, . . . )
Check if there is any NaN values

Numerical admissibility detection (NAD)
Discrete maximum principle DMP on submean values:

min
p
(u i−1,n

p ,u i,n
p ,u i+1,n

p ) ≤ u i,n+1
m ≤ max

p
(u i−1,n

p ,u i,n
p ,u i+1,n

p )

This criterion needs to be relaxed to preserve smooth extrema
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A posteriori subcell correction Correction

Corrected reconstructed flux

x̃k+3
2

F̂ i
k+3

2

x̃m+1
2

xi−1
2

xi+1
2

F̂ i
1
2

F̂ i
3
2

x̃1
2

F̂ i
m−1

2

F̂ i
m+1

2

F̃ i
m+1

2

x̃3
2

x̃m−1
2

F̃ i
m−1

2

Figure : Correction of the reconstructed flux
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A posteriori subcell correction Correction

Flowchart
1 Compute the uncorrected DG candidate solution u i,n+1

h

2 Project u i,n+1
h to get the submean values u i,n+1

m

3 Check u i,n+1
m through the troubled zone detection plus relaxation

4 If u i,n+1
m is admissible go further in time, otherwise modify the

corresponding reconstructed flux values

F̃ i
m−1 = F(u i,n

m−1,u
i,n
m ) and F̃ i

m = F(u i,n
m ,u i,n

m+1)

5 Through the corrected reconstructed flux, recompute the submean values
for tagged subcells and their first neighbors

6 Return to 3

Conclusion
The limitation only affects the DG solution at the subcell scale
The corrected scheme is conservative at the subcell level
In practice, few submean values need to be recomputed
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Numerical results 1D scalar conservation laws
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Numerical results 1D scalar conservation laws

Initial solution on x ∈ [0,1]
u0(x) = sin(2πx)
Periodic boundary conditions
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 exact solution
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DG cell boundaries

Figure : Linear advection with a 9th DG scheme and 5 cells after 1 period
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Numerical results 1D scalar conservation laws

Convergence rates
L1 L2

h Eh
L1

qh
L1

Eh
L2

qh
L2

1
20 8.07E-11 9.00 8.97E-11 9.00
1

40 1.58E-13 9.00 1.75E-13 9.00
1

80 3.08E-16 - 3.42E-16 -

Table: Convergence rates for the linear advection case for a 9th order DG scheme
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Numerical results 1D scalar conservation laws

Linear advection of a square signal after 1 period
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Figure : 9th order corrected and uncorrected DG solutions
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Numerical results 1D scalar conservation laws

Linear advection of a square signal after 10 periods
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(b) With correction

Figure : Comparison between different cell subdivision
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Numerical results 1D scalar conservation laws

Linear advection of a square signal
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(b) After 50 periods

Figure : Comparison between subcell FV limitation and the present correction
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Numerical results 1D scalar conservation laws

Linear advection of a square signal
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(a) 1st-order correction

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

 exact solution

9th order limited DG

DG cell boundaries

(b) 2nd-order correction

Figure : Comparison between 1st and 2nd order correction for the SubNAD
detection criterion
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Numerical results 1D scalar conservation laws

Linear advection of a composite signal after 4 periods
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Figure : 9th order corrected DG on 30 cells
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Numerical results 1D scalar conservation laws

Linear advection of a composite signal after 4 periods
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(b) 50 cells: subcell mean values

Figure : 4th order DG solutions provided different limitations
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Numerical results 1D scalar conservation laws

Linear advection of a composite signal after 4 periods
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Figure : 9th order DG solutions provided different limitations on 30 cells
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Numerical results 1D scalar conservation laws

Burgers equation: u0(x) = sin(2π x)

Figure : 9th order corrected DG on 10 cells for tf = 0.7
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Numerical results 1D scalar conservation laws

Burgers equation: expansion and shock waves collision

Figure : 9th order corrected DG on 15 cells for tf = 1.2
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Numerical results 1D scalar conservation laws

Burgers equation: expansion and shock waves collision
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Figure : 9th order corrected DG on 15 cells provided different limitations
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Numerical results 1D scalar conservation laws

Buckley non-convex flux problem at time t = 0.4
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Figure : Uncorrected DG solution for the Buckley non-convex flux case
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Numerical results 1D scalar conservation laws

Buckley non-convex flux problem at time t = 0.4
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Figure : 9th order DG solutions on 40 cells
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Numerical results 1D scalar conservation laws

Buckley non-convex flux problem at time t = 0.4
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(b) SubNAD criterion

Figure : Convergence analysis of 9th order DG scheme

François Vilar (IMAG) Subcell correction through flux reconstruction March 19, 2019 33 / 54



Numerical results 1D scalar conservation laws

Buckley non-convex flux problem at time t = 0.4
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Figure : 4th order DG solutions provided different limitations
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Numerical results 1D scalar conservation laws

Buckley non-convex flux problem at time t = 0.4
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Figure : 9th order DG solutions provided different limitations on 15 cells
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Numerical results 1D Euler system

Initial solution on x ∈ [0,1] for γ = 3
ρ0(x) = 1 + 0.9999999 sin(πx), u0(x) = 0, p0(x) = (ρ0(x))γ

=⇒ ρ0(− 1
2 ) = 1.E − 7 and p0(− 1

2 ) = 1.E − 21

Periodic boundary conditions
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(a) Density
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(b) Internal energy

Figure : 5th order corrected DG solution on 10 cells at t = 0.1
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Numerical results 1D Euler system

Convergence rates

L1 L2 Average % of
h Eh

L1
qh

L1
Eh

L2
qh

L2
corrected subcells

1
20 1.48E-5 4.35 2.02E-5 4.18 6.87 %
1
40 9.09E-7 4.88 1.38E-6 4.87 3.31 %
1
80 3.09E-8 4.95 4.73E-8 4.86 2.50 %
1

160 1.00E-9 - 1.63E-9 - 1.12 %

Table: Convergence rates on the pressure for the Euler equation for a 5th order DG
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Numerical results 1D Euler system

Sod shock tube problem
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(a) NAD + 1st order correction
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(b) SubNAD + 2nd order correction

Figure : 9th order corrected DG on 10 cells
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Numerical results 1D Euler system

Sod shock tube problem
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Figure : 3rd order DG solutions on 100 cells: cell mean values
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Numerical results 1D Euler system

Shock acoustic-wave interaction problem
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(a) Global view
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(b) Zoom on [0.5, 2.3]

Figure : 7th order corrected DG on 50 cells: comparison between 1st and 2nd
order corrections
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Numerical results 1D Euler system

Shock acoustic-wave interaction problem
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Figure : 3rd order corrected DG solutions on 200 cells: cell mean values
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Numerical results 1D Euler system

Blast waves interaction problem
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Figure : Corrected DG solution on 60 cells, from 3rd to 9th order
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Numerical results 2D scalar conservation laws

2D grid and subgrid
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Figure : 5x5 Cartesian grid and corresponding subgrid for a 6th order DG
scheme
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Numerical results 2D scalar conservation laws

Initial solution on (x , y) ∈ [0,1]2

u0(x , y) = sin(2π(x + y))
Periodic boundary conditions
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(a) Solution map
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(b) Solution profile

Figure : Linear advection with a 6th DG scheme and 5x5 grid after 1 period
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Numerical results 2D scalar conservation laws

Convergence rates
L1 L2

h Eh
L1

qh
L1

Eh
L2

qh
L2

1
5 2.10E-6 6.23 2.86E-6 6.24
1

10 2.79E-8 6.00 3.77E-8 6.00
1

20 3.36E-10 - 5.91E-10 -

Table: Convergence rates for the linear advection case for a 6th order DG scheme
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Numerical results 2D scalar conservation laws

Rotation of a composite signal after 1 period
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(b) Final solution

Figure : 6th order corrected DG on a 15x15 Cartesian mesh

François Vilar (IMAG) Subcell correction through flux reconstruction March 19, 2019 46 / 54



Numerical results 2D scalar conservation laws

Rotation of a composite signal after 1 period

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

 exact solution

6th limited DG

(a) Solution profile for y = 0.25
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(b) Solution profile for y = 0.75

Figure : 6th order corrected DG on a 15x15 Cartesian mesh
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Numerical results 2D scalar conservation laws

Rotation of a composite signal after 1 period: x = 0.25

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

 exact solution

6th limited DG

Figure : 6th order corrected DG on a 15x15 Cartesian mesh
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Numerical results 2D scalar conservation laws

Burgers equation with u0(x , y) = sin(2π (x + y))
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(b) Solution at t = 0.25

Figure : 6th order uncorrected DG on a 10x10 Cartesian mesh
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Numerical results 2D scalar conservation laws

Burgers equation with u0(x , y) = sin(2π (x + y))

(a) Solution map (b) Detected subcells

Figure : 6th order corrected DG on a 10x10 Cartesian mesh until t = 0.5
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Numerical results 2D scalar conservation laws

Burgers equation with u0(x , y) = sin(2π (x + y)) at t = 0.5
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Figure : 6th order corrected DG solution profile on a 10x10 Cartesian mesh
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Numerical results 2D scalar conservation laws

Burgers equation with composite signal
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Figure : 6th order corrected DG on a 10x10 Cartesian mesh
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Numerical results 2D scalar conservation laws

Kurganov, Petrova, Popov (KPP) non-convex flux problem
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Figure : 6th order corrected DG solution on a 30x30 Cartesian mesh
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Conclusion Ongoing work and references

Ongoing work
Extension to unstructured grids
Maximum principle preserving DG scheme through subcell FCT
reconstructed flux
DoF based h-p adaptive DG scheme through subcell finite volume
formulation

Published paper

F. VILAR, A Posteriori Correction of High-Order Discontinuous Galerkin
Scheme through Subcell Finite Volume Formulation and Flux
Reconstruction. JCP, (15)245-279, 2018.
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Conclusion Ongoing work and references

Relaxation of the DMP

vL = ∂xu
n+1
i − ∆xi

2 ∂xxu
n+1
i

vmin \max = min \max (∂xu
n+1
i , ∂xu

n+1
i−1 )

If (vL > ∂xu
n+1
i ) Then αL = min(1,

vmax − ∂xu
n+1
i

vR − ∂xu
n+1
i

)

If (vL < ∂xu
n+1
i ) Then αL = min(1,

vmin − ∂xu
n+1
i

vR − ∂xu
n+1
i

)

vR = ∂xu
n+1
i + ∆xi

2 ∂xxu
n+1
i

vmin \max = min \max (∂xu
n+1
i , ∂xu

n+1
i+1 )

If (vR > ∂xu
n+1
i ) Then αR = min(1,

vmax − ∂xu
n+1
i

vR − ∂xu
n+1
i

)

If (vR < ∂xu
n+1
i ) Then αR = min(1,

vmin − ∂xu
n+1
i

vR − ∂xu
n+1
i

)

François Vilar (IMAG) Subcell correction through flux reconstruction March 19, 2019 54 / 54



Conclusion Ongoing work and references

Relaxation of the DMP
α = min(αL, αR)

If (α = 1) Then DMP is relaxed

Hierarchical limiter

xi−1
2

xi+1
2

xi−3
2

xi+3
2

∂xu
n+1
i

∂xu
n+1
i+1

∂xu
n+1
i−1 vh(x)

vh(x) = ∂xu
n+1
i + (x − xi) ∂xxu

n+1
i

M. YANG and Z.J. WANG, A parameter-free generalized moment limiter
for high-order methods on unstructured grids. AAMM., 2009.

D. KUZMIN, A vertex-based hierarchical slope limiter for p-adaptive
discontinuous Galerkin methods. J. of Comp. and Appl. Math., 2010.
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Conclusion Ongoing work and references

Linear advection of a square signal after 1 period
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(b) Solution profile

Figure : 6th order corrected DG on a 15x15 Cartesian mesh
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Conclusion Ongoing work and references

Linear advection of a square signal after 1 period

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

 exact solution

6th limited DG

Figure : 6th order corrected DG on a 15x15 Cartesian mesh
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