A posteriori correction of DG schemes through subcell finite volume formulation and flux recontruction

François Vilar

Institut Montpelliérain Alexander Grothendieck Université de Montpellier

March 19, 2019

- Introduction
- DG as a subcell finite volume
- A posteriori subcell correction
- Numerical results
- Conclusion

History

- Introduced by Reed and Hill in 1973 in the frame of the neutron transport
- Major development and improvements by B. Cockburn and C.-W. Shu in a series of seminal papers

Procedure

- Local variational formulation
- Piecewise polynomial approximation of the solution in the cells
- Choice of the numerical fluxes
- Time integration

Advantages

- Natural extension of Finite Volume method
- Excellent analytical properties (L₂ stability, hp—adaptivity, ...)
- Extremely high accuracy (superconvergent for scalar conservation laws)
- Compact stencil (involve only face neighboring cells)

1D scalar conservation law

•
$$\frac{\partial u}{\partial t} + \frac{\partial F(u)}{\partial x} = 0, \quad (x, t) \in \omega \times [0, T]$$

•
$$u(x,0) = u_0(x), x \in \omega$$

$(k+1)^{th}$ order discretization

- $\{\omega_i\}_i$ a partition of ω , such that $\omega_i = [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}]$
- $0 = t^0 < t^1 < \cdots < t^N = T$ a partition of the temporal domain [0, T]
- $u_h(x,t)$ the numerical solution, such that $u_{h|\omega_i} = u_h^i \in \mathbb{P}^k(\omega_i)$

$$u_h^i(x,t) = \sum_{m=1}^{K+1} u_m^i(t) \, \sigma_m(x)$$

• $\{\sigma_m\}_m$ a basis of $\mathbb{P}^k(\omega_i)$

Local variational formulation on ω_i

•
$$\int_{\mathcal{O}} \left(\frac{\partial u}{\partial t} + \frac{\partial F(u)}{\partial x} \right) \psi \, dx = 0$$
 with $\psi(x)$ a test function

Integration by parts

$$\bullet \int_{\omega_i} \frac{\partial u}{\partial t} \psi \, \mathrm{d}x - \int_{\omega_i} F(u) \frac{\partial \psi}{\partial x} \, \mathrm{d}x + \left[F(u) \, \psi \right]_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} = 0$$

Approximated solution

• Substitute u by u_h^i , and restrict ψ to the polynomial space $\mathbb{P}^k(\omega_i)$

$$\bullet \sum_{m=1}^{k+1} \frac{\partial u_m^i}{\partial t} \int_{\omega_i} \sigma_m \sigma_p \, \mathrm{d}x = \int_{\omega_i} F(u_h^i) \frac{\partial \sigma_p}{\partial x} \, \mathrm{d}x - \left[\mathcal{F} \sigma_p \right]_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}}, \quad \forall p \in [1, k+1]$$

Numerical flux

•
$$\mathcal{F}_{i+\frac{1}{2}} = \mathcal{F}\left(u_h^i(x_{i+\frac{1}{2}},t), u_h^{i+1}(x_{i+\frac{1}{2}},t)\right)$$

•
$$\mathcal{F}(u,v) = \frac{F(u) + F(v)}{2} - \frac{\gamma(u,v)}{2}(v-u)$$

Local Lax-Friedrichs

Subcell resolution of DG scheme

Figure: Linear advection of composite signal after 4 periods

Subcell resolution of DG scheme

Figure: Linear advection of composite signal after 4 periods

Gibbs phenomenon

- High-order schemes leads to spurious oscillations near discontinuities
- Leads potentially to nonlinear instability, non-admissible solution, crash
- Vast literature of how prevent this phenomenon to happen:
 - a priori and a posteriori limitations

A priori limitation

- Artificial viscosity
- Flux limitation
- Slope/moment limiter
- Hierarchical limiter
- ENO/WENO limiter

A posteriori limitation

- MOOD ("Multi-dimensional Optimal Order Detection")
- Subcell finite volume limitation
- Subcell limitation through flux reconstruction

Admissible numerical solution

- Maximum principle / positivity preserving
- Prevent the code from crashing (for instance avoiding NaN)
- Ensure the conservation of the scheme

Spurious oscillations

- Discrete maximum principle
- Relaxing condition for smooth extrema

Accuracy

- Retain as much as possible the subcell resolution of the DG scheme
- Minimize the number of subcell solutions to recompute

Modify locally, at the subcell level, the numerical solution without impacting the solution elsewhere in the cell

- Introduction
- DG as a subcell finite volume
- A posteriori subcell correction
- Numerical results
- Conclusion

DG as a subcell finite volume

- Rewrite DG scheme as a specific finite volume scheme on subcells
- Exhibit the corresponding subcell numerical fluxes: reconstructed flux

Local variational formulation

$$\bullet \int_{\omega_i} \frac{\partial u_h^i}{\partial t} \psi \, \mathrm{d}x = \int_{\omega_i} F(u_h^i) \frac{\partial \psi}{\partial x} \, \mathrm{d}x - \left[\mathcal{F} \psi \right]_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}}, \qquad \forall \psi \in \mathbb{P}^k(\omega_i)$$

- Substitute $F(u_h^i)$ with $F_h^i \in \mathbb{P}^{k+1}(\omega_i)$ (collocated or L_2 projection)
- $\bullet \int_{\omega_i} \frac{\partial u_h^i}{\partial t} \psi \, \mathrm{d}x = \int_{\omega_i} \frac{\partial F_h^i}{\partial x} \psi \, \mathrm{d}x + \left[(F_h^i \mathcal{F}) \psi \right]_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}}, \qquad \forall \psi \in \mathbb{P}^k(\omega_i)$

Subcell decomposition through k + 2 flux points

Subdivision and definition

- ω_i is subdivided in k+1 subcells $S_m^i = [\widetilde{x}_{m-\frac{1}{2}}, \widetilde{x}_{m+\frac{1}{2}}]$
- Let us define $\overline{\psi}_m = \frac{1}{|S_m^i|} \int_{S_m^i} \psi \, \mathrm{d}x$ the subcell mean value

Subresolution basis functions

• Let us introduce the k+1 basis functions $\{\phi_m\}_m$ such that $\forall\,\psi\in\mathbb{P}^k(\omega_i)$

$$\int_{\omega_i} \phi_m \psi \, \mathrm{d}x = \int_{\mathcal{S}_m^i} \psi \, \mathrm{d}x, \qquad \forall \, m = 1, \dots, k+1,$$

$$\bullet \sum_{m=1}^{k+1} \phi_m(x) = 1$$

These particular functions can be seen as the L_2 projection of the indicator functions $\mathbb{1}_m(x)$ onto $\mathbb{P}^k(\omega_i)$

Subcell finite volume scheme

•
$$|S_m^i| \frac{\partial \overline{u}_m^i}{\partial t} = -\int_{S_m^i} \frac{\partial F_h^i}{\partial x} dx + \left[(F_h^i - \mathcal{F}) \phi_m \right]_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}}$$

$$\bullet \ \frac{\partial \, \overline{U}_m^i}{\partial t} = -\frac{1}{|S_m^i|} \left(\left[F_h^i \right]_{\widetilde{x}_{m-\frac{1}{2}}}^{\widetilde{x}_{m+\frac{1}{2}}} - \left[\phi_m \, \left(F_h^i - \mathcal{F} \right) \right]_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \right)$$

$$\bullet \ \frac{\partial \, \overline{u}_m^i}{\partial t} = -\frac{1}{|S_m^i|} \left(\widehat{F}_{m+\frac{1}{2}}^i - \widehat{F}_{m-\frac{1}{2}}^i \right)$$

Subcell finite volume

Linear system

$$\widehat{F}_{m+\frac{1}{2}}^{i} - \widehat{F}_{m-\frac{1}{2}}^{i} = \left[F_{h}^{i}\right]_{\widetilde{X}_{m-\frac{1}{2}}}^{\widetilde{X}_{m+\frac{1}{2}}} - \left[\phi_{m}\left(F_{h}^{i} - \mathcal{F}\right)\right]_{X_{i-\frac{1}{2}}}^{X_{i+\frac{1}{2}}},$$

$$\widehat{F}_{\frac{1}{2}}^{i} = \mathcal{F}_{i-\frac{1}{2}} \quad \text{and} \quad \widehat{F}_{k+\frac{3}{2}}^{i} = \mathcal{F}_{i+\frac{1}{2}}$$

 $\forall m \in [1, k+1]$

Reconstructed flux

$$\bullet \ \widehat{F}_{m+\frac{1}{2}}^{i} = F_{h}^{i}(\widetilde{X}_{m+\frac{1}{2}}) - C_{m+\frac{1}{2}}^{i-\frac{1}{2}} \left(F_{h}^{i}(X_{i-\frac{1}{2}}) - \mathcal{F}_{i-\frac{1}{2}} \right) - C_{m+\frac{1}{2}}^{i+\frac{1}{2}} \left(F_{h}^{i}(X_{i+\frac{1}{2}}) - \mathcal{F}_{i+\frac{1}{2}} \right)$$

$$\bullet \ \ C_{m+\frac{1}{2}}^{i-\frac{1}{2}} = \sum_{p=m+1}^{k+1} \phi_p(x_{i-\frac{1}{2}}) \qquad \text{ and } \qquad C_{m+\frac{1}{2}}^{i+\frac{1}{2}} = \sum_{p=1}^m \phi_p(x_{i+\frac{1}{2}})$$

Correction terms for symmetric distribution of $\{\widetilde{x}_{m+\frac{1}{2}}\}_m$

- Let $\boldsymbol{B} \in \mathbb{R}^{k+1}$ be defined as $B_j = (-1)^{j+1} \binom{k+j}{j} \binom{k+1}{j}$
- $\widetilde{\xi}_{m+\frac{1}{2}} = \frac{\widetilde{x}_{m+\frac{1}{2}} x_{i-\frac{1}{2}}}{x_{i+\frac{1}{2}} x_{i-\frac{1}{2}}}, \quad \forall \, m = 0, \dots, k+1$
- $\bullet \ \ C_{m+\frac{1}{2}}^{i-\frac{1}{2}} = 1 \left(\widetilde{\xi}_{m+\frac{1}{2}}, \dots, (\widetilde{\xi}_{m+\frac{1}{2}})^{k+1}\right)^t \cdot \textbf{\textit{B}} \qquad \text{and} \qquad C_{m+\frac{1}{2}}^{i+\frac{1}{2}} = C_{k+\frac{3}{2}-m}^{i-\frac{1}{2}}$

Subcell finite volume equivalent to DG

$$\bullet \ \frac{\partial \, \overline{u}_m^i}{\partial t} = -\frac{1}{|S_m^i|} \left(\widehat{F}_{m+\frac{1}{2}}^i - \widehat{F}_{m-\frac{1}{2}}^i \right),$$

$$\forall m=1,\ldots,k+1$$

$$\bullet \ \widehat{F}_{m+\frac{1}{2}}^{i} = F_{h}^{i}(\widetilde{X}_{m+\frac{1}{2}}) - C_{m+\frac{1}{2}}^{i-\frac{1}{2}} \left(F_{h}^{i}(X_{i-\frac{1}{2}}) - \mathcal{F}_{i-\frac{1}{2}} \right) - C_{m+\frac{1}{2}}^{i+\frac{1}{2}} \left(F_{h}^{i}(X_{i+\frac{1}{2}}) - \mathcal{F}_{i+\frac{1}{2}} \right)$$

Reconstructed flux taking into account flux jumps

Flux reconstruction / CPR

The correction functions defined as

$$g_{LB}(x) = \sum_{m=0}^{k+1} C_{i-\frac{1}{2}}^{(m)} L_m(x)$$
 and $g_{RB}(x) = \sum_{m=0}^{k+1} C_{i+\frac{1}{2}}^{(m)} L_m(x)$

are nothing but the right and left Radau \mathbb{P}^k polynomials

Subcell finite volume

- Reconstructed flux is used as a numerical flux for subcell FV schemes
- This demonstration is not restricted to the flux collocation case
- The correction terms are very simple and explicitly defined

- Introduction
- DG as a subcell finite volume
- 3 A posteriori subcell correction
- Numerical results
- Conclusion

RKDG scheme

- SSP Runge-Kutta: convex combinations of first-order forward Euler
- For sake of clarity, we focus on forward Euler time stepping

Projection on subcells of RKDG solution

- $u_h^{i,n}(x) = \sum_{m=1}^{N+1} u_m^{i,n} \sigma_m(x)$ is uniquely defined by its k+1 submean values
- Introducing the matrix Π defined as $\pi_{mp} = \frac{1}{|S_m^i|} \int_{S_m^i} \sigma_p \, \mathrm{d}x$, then

$$\Pi \begin{pmatrix} u_1^{i,n} \\ \vdots \\ u_{k+1}^{i,n} \end{pmatrix} = \begin{pmatrix} \overline{u}_1^{i,n} \\ \vdots \\ \overline{u}_{k+1}^{i,n} \end{pmatrix}$$

Projection

Figure: Polynomial solution and its associated submean values

Set up

- We assume that, for each cell, the $\{\overline{u}_m^{i,n}\}_m$ are admissible
- Compute a candidate solution u_h^{n+1} from u_h^n through uncorrected DG
- For each subcell, check if the submean values $\{\overline{u}_m^{i,n+1}\}_m$ are ok

Physical admissibility detection (PAD)

- Check if $\overline{u}_{m}^{i,n+1}$ lies in an convex physical admissible set (maximum principle for SCL, positivity of the pressure and density for Euler, ...)
- Check if there is any NaN values

Numerical admissibility detection (NAD)

Discrete maximum principle DMP on submean values:

$$\min_{p}(\overline{u}_p^{i-1,n},\overline{u}_p^{i,n},\overline{u}_p^{i+1,n}) \leq \overline{u}_m^{i,n+1} \leq \max_{p}(\overline{u}_p^{i-1,n},\overline{u}_p^{i,n},\overline{u}_p^{i+1,n})$$

This criterion needs to be relaxed to preserve smooth extrema

Corrected reconstructed flux

Figure: Correction of the reconstructed flux

Flowchart

- Compute the uncorrected DG candidate solution $u_h^{i,n+1}$
- ② Project $u_h^{i,n+1}$ to get the submean values $\overline{u}_m^{i,n+1}$
- **3** Check $\overline{u}_m^{i,n+1}$ through the troubled zone detection plus relaxation
- \bullet If $\overline{u}_m^{i,n+1}$ is admissible go further in time, otherwise modify the corresponding reconstructed flux values

$$\widetilde{F}_{m-1}^i = \mathcal{F}(\overline{u}_{m-1}^{i,n}, \overline{u}_m^{i,n}) \quad \text{and} \quad \widetilde{F}_m^i = \mathcal{F}(\overline{u}_m^{i,n}, \overline{u}_{m+1}^{i,n})$$

- Through the corrected reconstructed flux, recompute the submean values for tagged subcells and their first neighbors
- Return to

Conclusion

- The limitation only affects the DG solution at the subcell scale
- The corrected scheme is conservative at the subcell level
- In practice, few submean values need to be recomputed

- Introduction
- DG as a subcell finite volume
- A posteriori subcell correction
- Numerical results
- Conclusion

Initial solution on $x \in [0, 1]$

- $u_0(x) = \sin(2\pi x)$
- Periodic boundary conditions

Figure: Linear advection with a 9th DG scheme and 5 cells after 1 period

Convergence rates

	L ₁		L ₂	
h	$E_{L_1}^h$	$q_{L_1}^h$	$E_{L_2}^h$	$q_{L_2}^h$
1/20	8.07E-11	9.00	8.97E-11	9.00
$\frac{1}{40}$	1.58E-13	9.00	1.75E-13	9.00
$\frac{1}{80}$	3.08E-16	-	3.42E-16	-

Table: Convergence rates for the linear advection case for a 9th order DG scheme

Linear advection of a square signal after 1 period

Figure: 9th order corrected and uncorrected DG solutions

Figure: Comparison between different cell subdivision

Linear advection of a square signal

Figure : Comparison between subcell FV limitation and the present correction

Linear advection of a square signal

Figure: Comparison between 1st and 2nd order correction for the SubNAD detection criterion

Linear advection of a composite signal after 4 periods

Figure: 9th order corrected DG on 30 cells

Linear advection of a composite signal after 4 periods

Figure: 4th order DG solutions provided different limitations

Linear advection of a composite signal after 4 periods

Figure: 9th order DG solutions provided different limitations on 30 cells

Burgers equation: $u_0(x) = \sin(2\pi x)$

Figure : 9th order corrected DG on 10 cells for $t_f = 0.7$

Burgers equation: expansion and shock waves collision

Figure : 9th order corrected DG on 15 cells for $t_f = 1.2$

Burgers equation: expansion and shock waves collision

Figure: 9th order corrected DG on 15 cells provided different limitations

Buckley non-convex flux problem at time t = 0.4

Figure: Uncorrected DG solution for the Buckley non-convex flux case

Buckley non-convex flux problem at time t = 0.4

Figure: 9th order DG solutions on 40 cells

Figure: Convergence analysis of 9th order DG scheme

Buckley non-convex flux problem at time t = 0.4

Figure: 4th order DG solutions provided different limitations

34/54

Buckley non-convex flux problem at time t = 0.4

Figure: 9th order DG solutions provided different limitations on 15 cells

Initial solution on $x \in [0, 1]$ for $\gamma = 3$

•
$$\rho_0(x) = 1 + 0.9999999 \sin(\pi x), \quad u_0(x) = 0, \quad p_0(x) = (\rho_0(x))^{\gamma}$$

 $\implies \rho_0(-\frac{1}{2}) = 1.E - 7 \quad \text{and} \quad p_0(-\frac{1}{2}) = 1.E - 21$

Periodic boundary conditions

Figure : 5th order corrected DG solution on 10 cells at t = 0.1

Convergence rates

	L ₁		L ₂		Average % of	
h	$E_{L_1}^h$	$q_{L_1}^h$	$E_{L_2}^h$	$q_{L_2}^h$	corrected subcells	
<u>1</u> 20	1.48E-5	4.35	2.02E-5	4.18	6.87 %	
1 40	9.09E-7	4.88	1.38E-6	4.87	3.31 %	
1 80	3.09E-8	4.95	4.73E-8	4.86	2.50 %	
160	1.00E-9	-	1.63E-9	-	1.12 %	

Table: Convergence rates on the pressure for the Euler equation for a 5th order DG

38/54

Sod shock tube problem

Figure: 3rd order DG solutions on 100 cells: cell mean values

Shock acoustic-wave interaction problem

Figure: 7th order corrected DG on 50 cells: comparison between 1st and 2nd order corrections

Shock acoustic-wave interaction problem

Figure: 3rd order corrected DG solutions on 200 cells: cell mean values

Blast waves interaction problem

Figure: Corrected DG solution on 60 cells, from 3rd to 9th order

2D grid and subgrid

Figure: 5x5 Cartesian grid and corresponding subgrid for a 6th order DG scheme

Initial solution on $(x, y) \in [0, 1]^2$

- $u_0(x, y) = \sin(2\pi(x + y))$
- Periodic boundary conditions

Figure: Linear advection with a 6th DG scheme and 5x5 grid after 1 period

March 19, 2019

Convergence rates

	L ₁		L ₂		
h	$E_{L_1}^h$	$q_{L_1}^h$	$E_{L_2}^h$	$q_{L_2}^h$	
1 5	2.10E-6	6.23	2.86E-6	6.24	
1 10	2.79E-8	6.00	3.77E-8	6.00	
1/20	3.36E-10	-	5.91E-10	-	

Table: Convergence rates for the linear advection case for a 6th order DG scheme

Rotation of a composite signal after 1 period

Figure: 6th order corrected DG on a 15x15 Cartesian mesh

Rotation of a composite signal after 1 period

Figure: 6th order corrected DG on a 15x15 Cartesian mesh

Rotation of a composite signal after 1 period: x = 0.25

Figure: 6th order corrected DG on a 15x15 Cartesian mesh

Figure: 6th order uncorrected DG on a 10x10 Cartesian mesh

Burgers equation with $u_0(x, y) = \sin(2\pi (x + y))$

(a) Solution map

(b) Detected subcells

Figure : 6th order corrected DG on a 10x10 Cartesian mesh until t = 0.5

Burgers equation with $u_0(x, y) = \sin(2\pi (x + y))$ at t = 0.5

Figure: 6th order corrected DG solution profile on a 10x10 Cartesian mesh

Figure: 6th order corrected DG on a 10x10 Cartesian mesh

Kurganov, Petrova, Popov (KPP) non-convex flux problem

Figure: 6th order corrected DG solution on a 30x30 Cartesian mesh

Ongoing work

- Extension to unstructured grids
- Maximum principle preserving DG scheme through subcell FCT reconstructed flux
- DoF based h-p adaptive DG scheme through subcell finite volume formulation

Published paper

F. VILAR, A Posteriori Correction of High-Order Discontinuous Galerkin Scheme through Subcell Finite Volume Formulation and Flux Reconstruction. JCP, (15)245-279, 2018.

Relaxation of the DMP

- $V_{\min \backslash \max} = \min \backslash \max(\overline{\partial_X u_i^{n+1}}, \overline{\partial_X u_{i-1}^{n+1}})$
- If $(v_L > \overline{\partial_x u_i}^{n+1})$ Then $\alpha_L = \min(1, \frac{v_{\max} \overline{\partial_x u_i}^{n+1}}{v_R \overline{\partial_x u_i}^{n+1}})$
- If $(v_L < \overline{\partial_x u_i}^{n+1})$ Then $\alpha_L = \min(1, \frac{v_{\min} \overline{\partial_x u_i}^{n+1}}{v_R \overline{\partial_x u_i}^{n+1}})$
- $V_R = \overline{\partial_x u_i}^{n+1} + \frac{\Delta x_i}{2} \overline{\partial_{xx} u_i}^{n+1}$
- $V_{\min \backslash \max} = \min \backslash \max(\overline{\partial_x u_i}^{n+1}, \overline{\partial_x u_{i+1}}^{n+1})$
- If $(v_R > \overline{\partial_x u_i}^{n+1})$ Then $\alpha_R = \min(1, \frac{v_{\max} \overline{\partial_x u_i}^{n+1}}{v_R \overline{\partial_x u_i}^{n+1}})$
- If $(v_R < \overline{\partial_x u_i}^{n+1})$ Then $\alpha_R = \min(1, \frac{v_{\min} \overline{\partial_x u_i}^{n+1}}{v_R \overline{\partial_x u_i}^{n+1}})$

Relaxation of the DMP

- $\bullet \ \alpha = \min(\alpha_L, \alpha_R)$
- If $(\alpha = 1)$ Then DMP is relaxed

Hierarchical limiter

- $v_h(x) = \overline{\partial_x u_i}^{n+1} + (x x_i) \overline{\partial_{xx} u_i}^{n+1}$
- M. YANG and Z.J. WANG, A parameter-free generalized moment limiter for high-order methods on unstructured grids. AAMM., 2009.
- D. Kuzmin, A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods. J. of Comp. and Appl. Math., 2010.

Linear advection of a square signal after 1 period

Figure: 6th order corrected DG on a 15x15 Cartesian mesh

Linear advection of a square signal after 1 period

Figure: 6th order corrected DG on a 15x15 Cartesian mesh