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Flow transformation Governing equations Equation of state

Flow transformation of the fluid
The fluid flow is described mathematically by the continuous
transformation, Φ, so-called mapping such as Φ : X −→ x = Φ(X , t)

����

��

∂Ω

X

N

n

∂ω

x = Φ(X, t)

Ω ω

Φ

Figure: Notation for the flow map.

where X is the Lagrangian (initial) coordinate, x the Eulerian (actual)
coordinate, N the Lagrangian normal and n the Eulerian normal

Deformation Jacobian matrix: deformation gradient tensor
F = ∇XΦ = ∂ x

∂X and J = det F > 0
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Flow transformation Governing equations Equation of state

Trajectory equation
d x
dt

= U(x , t), x(X ,0) = X

Material time derivative
d
dt

f (x , t) =
∂

∂t
f (x , t) + U �∇x f (x , t)

Transformation formulas
FdX = dx Change of shape of infinitesimal vectors
ρ0 = ρ J Mass conservation
JdV = dv Measure of the volume change
JF−tNdS = nds Nanson formula

Differential operators transformations
∇xP = 1

J∇X � (P JF−t) Gradient operator

∇x � U = 1
J∇X � (JF−1U) Divergence operator
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Flow transformation Governing equations Equation of state

Piola compatibility condition

∇x �(JF−t) = 0 =⇒
∫

Ω

∇x �(JF−t) dV =

∫
∂Ω

JF−t N dS =

∫
∂ω

n ds = 0

Deformation gradient tensor
d F
dt
−∇X U = 0

Actual configuration

ρ
d
dt

(
1
ρ

)−∇x � U = 0

ρ
d U
dt

+∇xP = 0

ρ
d e
dt

+∇x � (PU) = 0

Initial configuration

ρ0 d
dt

(
1
ρ

)−∇X � (JF−1U) = 0

ρ0 d U
dt

+∇X � (P JF−t) = 0

ρ0 d e
dt

+∇X � (JF−1PU) = 0

Specific internal energy

ε = e − 1
2 U2
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Flow transformation Governing equations Equation of state

Ideal EOS for the perfect gas

P = ρ (γ − 1) ε where a =
√

γ P
ρ

Stiffened EOS for water

P = ρ (γ − 1) ε− γ P? where a =
√

γ (P+P?)
ρ

Jones-Wilkins-Lee (JWL) EOS for the detonation-products gas

P = ρ (γ − 1) ε+ f (ρ) where a =
√

γ P−f (ρ)+ρ f ′(ρ)
ρ
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Schemes Time step constraint Positivity Stability

Mass averaged values equations

mc(
1
ρ

)n+1
c = mc(

1
ρ

)n
c + ∆t

∑
p∈Q(∂ωc)

Un
p � lnpcnn

pc

mcUn+1
c = mcUn

c −∆t
∑

p∈Q(∂ωc)

F n
pc

mcen+1
c = mcen

c −∆t
∑

p∈Q(∂ωc)

Un
p � F n

pc

Definitions

ψc =
1

mc

∫
Ωc

ρ0 ψ dV =
1

mc

∫
ωc

ρψ dv mean value

F pc = Pc lpcnpc −Mpc(Up − Uc) subcell forces

Momentum and total energy conservation∑
c∈C(p)

F pc = 0 =⇒ (
∑

c∈C(p)

Mpc)Up =
∑

c∈C(p)

(Pc lpcnpc + MpcUc)
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Schemes Time step constraint Positivity Stability

GLACE assumptions
a) Q(∂ωc) = P(ωc) the node set

b) lpcnpc = l−pcn−pc + l+
pcn+

pc = 1
2 lp−pnp−p + 1

2 lpp+npp+

c) Mpc = Zpc lpcnpc ⊗ npc

d) Up = (
∑

c∈C(p)

Mpc)−1
∑

c∈C(p)

(Pc lpcnpc + MpcUc)

p+

lpp+

p−

ωc

npp+

np−p
lp−p

p
lpcnpc

EUCCLHYD assumptions

Same assumptions a), b) and d) as GLACE

c) Mpc = Z−pc l−pcn−pc ⊗ n−pc + Z +
pc l+

pcn+
pc ⊗ n+

pc

March 27th, 2014 François Vilar Positivity-preserving cell-centered scheme 8 / 52



CCLS Descriptions 1st order High-order Numerical results Conclusion

Schemes Time step constraint Positivity Stability
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p+
p

p+

p
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ωc3

ωc4
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ωc5
ωc1

ωL

ωR

Node 
ell set Middle point 
ell set

Cell-centered DG (CCDG) assumptions

a) Q(∂ωc) =
⋃

p∈P(ωc)

(Q(pp+) \ {p+})

b) For q ∈ Q(pp+), lqnq|pp+ =

∫ 1

0
λq(ζ)

∑
k∈Q(pp+)

∂λk

∂ζ
(xk × ez) dζ

For p ∈ P(ωc), lpcnpc = lpnp|p−p
+ lpnp|pp+

For q ∈ Q(pp+) \ {p,p+}, lqcnqc = lqnq|pp+
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Schemes Time step constraint Positivity Stability

CCDG assumptions
c) For p ∈ P(ωc), Mpc = Z−pc l−pcn−pc ⊗ n−pc + Z +

pc l+
pcn+

pc ⊗ n+
pc

For q ∈ Q(pp+) \ {p,p+}, Mpc = Zpc lpcnpc ⊗ npc

d) For p ∈ P(ωc), Up = (
∑

c∈C(p)

Mpc)−1
∑

c∈C(p)

(Pc lpcnpc + MpcUc)

For q ∈ Q(pp+) \ {p,p+}, Up =
ZpL UL + ZpR UR

ZpL + ZpR
− PR − PL

ZpL + ZpR
npL
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Schemes Time step constraint Positivity Stability

CFL condition
System eigenvalues: −a, 0, a

∀c, ∆t ≤ Ce
vn

c

ac Lc

Volume control

Relative volume variation:
|vn+1

c − vn
c |

vn
c

≤ Cv

∀c, ∆t ≤ Cv
vn

c

|
∑

p∈Q(∂ωc)

Un
p � lnpcnn

pc |
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Schemes Time step constraint Positivity Stability

Admissible set
W = ( 1

ρ ,U,e)t

G = {W, ρ > 0, ε = e − 1
2 U2 > 0, a2 = (∂ρP)|S > 0}

Ideal EOS
If ρ > 0 then ε > 0 ⇐⇒ a2 = γ(γ − 1)ε > 0 ⇐⇒ P = ρ(γ − 1)ε > 0

G = {W, ρ > 0 and ε = e − 1
2 U2 > 0} convex set

First-order positivity-preserving scheme
If Wn

c = (( 1
ρ )n

c ,U
n
c ,en

c )t ∈ G, then under which constraint Wn+1
c ∈ G ?

Positive density

If ( 1
ρ )n

c > 0 then ( 1
ρ )n+1

c > 0 ⇐⇒ ( 1
ρ )n

c > −
∆t
mc

∑
p∈Q(∂ωc)

Un
p � lnpcnn

pc

Thus if Cv < 1 then ( 1
ρ )n

c =
vn

c
mc

> 0 =⇒ ( 1
ρ )n+1

c =
vn+1

c
mc

> 0
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Schemes Time step constraint Positivity Stability

Positive internal energy and pressure
εc = ec − 1

2 (Uc)2

εn+1
c = εn

c −
∆t
mc

(∑
p

Un
p � F n

pc −
∑

p

Un
c � F n

pc +
∆t

2mc
(
∑

p

F n
pc)2

)

Properties
F pc = Pc lpcnpc −Mpc(Up − Uc)∑

p∈Q(∂ωc)

lpcnpc =
∑

p∈P(ωc)

lpp+npp+ = 0

Definitions

λc =
∆t
mc

and V p = Un
p − Un

c

Ac = εn
c − Pn

c λc

∑
p

Un
p � lnpcnn

pc

Bc =
∑

p

MpcV p � V p −
λc

2
(
∑

p

MpcV p)2
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Schemes Time step constraint Positivity Stability

Positive pressure and internal energy
εn+1

c = Ac + λc Bc

Thus if Ac > 0 and Bc ≥ 0 then εn+1
c > 0

Ac > 0

Ac = εn
c −

Pn
c

ρn
c

vn+1
c − vn

c

vn
c

Thus if Cv <
ρn

c ε
n
c

Pn
c

=
1

γ − 1
then εn

c > 0 =⇒ Ac > 0

Entropy
T dS = dε+ Pd( 1

ρ ) ≥ 0 Gibbs identity + second law of thermodynamics

Discrete entropy inequality

λc Bc = εn+1
c − Ac = εn+1

c − εn
c + Pn

c

(
( 1
ρ )n+1

c − ( 1
ρ )n

c

)
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Schemes Time step constraint Positivity Stability

Bc ≥ 0

Bc =
∑

p∈Q(∂ωc)

MpcV p � V p −
λc

2
(
∑

p∈Q(∂ωc)

MpcV p)2

Mpc =

Np∑
n=1

Zpn lpn npn ⊗ npn

∑
p∈Q(∂ωc)

MpcV p � V p =
∑

p∈Q(∂ωc)

Np∑
n=1

Zpn lpn (V p � npn )2 =
∑

p∈Q(∂ωc)

Np∑
n=1

Zpn lpn X 2
pn

Re-numbering:
∑

p∈Q(∂ωc)

Np∑
n=1

ψpn =

Nc∑
i=1

ψi

Bc =

Nc∑
i=1

Zi li X 2
i −

λc

2

Nc∑
i,j=1

ZiZj li lj XiXj (ni � nj ) = HX � X ,

where X = (X1, . . . ,XNc )t and Hij =


Zi li (1−

λc

2
Zi li ), if i = j ,

−λc

2
ZiZj li lj (ni � nj ), if i 6= j .
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Schemes Time step constraint Positivity Stability

Theorem
If H is symmetric diagonally dominant with non-negative diagonal entries
then H is positive semi-definite (thanks to Gerschgorin theorem)

Bc ≥ 0

If λc ≤
2

Zi li
then Hii ≥ 0

If λc ≤
2∑

j

Zj lj |ni � nj |
then |Hii | −

∑
j 6=i

|Hij | ≥ 0

Thus if λc ≤
2∑

j

Zj lj
⇐⇒ ∆t ≤ mc

1
2

∑
j

Zj lj
then Bc ≥ 0

Acoustic impedance Zc = ρc ac

If ∆t ≤ vn
c

ac Lc
where Lc = 1

2

∑
j lj then Bc ≥ 0
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Schemes Time step constraint Positivity Stability

Positivity-preserving property
Finally, for the first-order finite volume cell-centered Lagrangian schemes, if

1 Wn
c ∈ G

2 ∆t ≤ Cv
vn

c

|
∑

p∈Q(∂ωc)

Un
p � lnpcnn

pc |
, with Cv < min

(
1,

1
γ − 1

)

3 ∆t ≤ vn
c

ac Lc
, with Lc =



1
2

∑
p∈P(ωc)

lpc , GLACE

1
2

∑
p∈P(ωc)

lpp+ , EUCCLHYD

1
2

∑
p∈P(ωc)

∑
q∈Q(pp+)

lq|pp+ . CCDG

Then Wn+1
c ∈ G and εn+1

c − εn
c + Pn

c

(
( 1
ρ )n+1

c − ( 1
ρ )n

c

)
≥ 0
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Schemes Time step constraint Positivity Stability

Norm definitions

‖ψ‖L1 =

∫
Ω

ρ0 |ψ| dV =

∫
ω

ρ |ψ| dv

‖ψ‖L2 =

(∫
Ω

ρ0 ψ2 dV
) 1

2

=

(∫
ω

ρψ2 dv
) 1

2

Stability analysis
For sake of simplicity periodic boundary conditions (PBC) are considered
ψn

h is the piecewise constant numerical solution such as ψn
h|ωc

= ψn
c

We assume the initial solution vector W0
c = (( 1

ρ )0
c ,U

0
c ,e0

c )t on cell ωc is
computed through

W0
c =

1
mc

∫
Ωc

ρ0(X ) W0(X ) dV ,

where W0 = ( 1
ρ0 ,U

0,e0)t and 1
ρ0 ,U

0,e0 respectively are the initial
specific volume, velocity and total energy
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Schemes Time step constraint Positivity Stability

Specific volume

Positivity |(1
ρ

)n
c | = (

1
ρ

)n
c

Conservation
∑

c

mc (
1
ρ

)n
c =

∑
c

mc (
1
ρ

)n−1
c (since PBC +

∑
c∈C(p)

lpcnpc = 0)

‖(1
ρ

)n
h‖L1 =

∑
c

mc |(
1
ρ

)n
c | =

∑
c

mc |(
1
ρ

)n−1
c | = ‖(1

ρ
)n−1
h ‖L1

Total energy

Positivity |en
c | = en

c (since εn
c > 0⇐⇒ en

c >
1
2 (Un

c)2 ≥ 0)

Conservation
∑

c

mc en
c =

∑
c

mc en−1
c (since PBC +

∑
c∈C(p)

F pc = 0)

‖en
h‖L1 =

∑
c

mc |en
c | =

∑
c

mc |en−1
c | = ‖en−1

h ‖L1
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Schemes Time step constraint Positivity Stability

Kinetic energy and velocity

K = 1
2 U2 specific kinetic energy

1
2 (Un

c)2 < en
c =⇒ 1

2

∑
c

mc (Un
c)2 <

∑
c

mc en
c

2mcen
c = 2

√
mc

√
mc (en

c )2 ≤ mc + mc (en
c )2

∑
c

mc (Un
c)2 <

∑
c

mc +
∑

c

mc (en
c )2

Stability

‖(1
ρ

)n
h‖L1 = ‖ 1

ρ0 ‖L1

‖K n
h ‖L1 < ‖en

h‖L1

‖en
h‖L1 = ‖e0‖L1

‖Un
h‖2

L2
< mω + ‖en

h‖2
L2
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Polynomial reconstruction Positivity Limitation Stability

Control point solvers
In the control point solvers, F pc and Up, the interpolation values at point
p of the high-order approximations of the pressure and velocity, Pc

h (p)
and Uc

h(p), are used instead of the mean values Pc and Uc

High-order extension
1 Piecewise linear approximations of the pressure and velocity, Ph(p) and

Uh(p), are constructed using the mean values, Pc and Uc , over the cells
(GLACE and EUCCLHYD)

2 A piecewise polynomial reconstruction of the solution vector
Wh(x) = (( 1

ρ
)h(x),Uh(x), eh(x))t is assumed, such as its mass averaged

value over cell ωc corresponds to Wc (CCDG)
The pressure is pointwisely defined through the EOS, such as

Ph(x) = ρh(x) (γ − 1) (eh(x)− 1
2

(Uh(x)2))
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Polynomial reconstruction Positivity Limitation Stability

Quadrature rule over triangles
Exact for polynomials up to degree 2(d − 1)

containing the cell boundary control points, i .e., Q(∂Ωc) ⊂ ⋃ntri
i=1Ri,c

With positive weights, i .e., ∀q ∈ Ri,c , wq ≥ 0

GLACE and EUCCLHYD schemes

ψc =
1

mc

∫
ωc

ρc ψ
c
h dv =

1
mc

ntri∑
i=1

|τ c
i |
∑

q∈Ri,c

wq ρc ψ
c
h(q)

mc
q =

∑
i,Ri,c3q

|τ c
i |wq ρc

ωc

τ ci

p

τ ci+1

CCDG scheme

ψc =
1

mc

∫
Ωc

ρ0 ψc
h dV =

1
mc

ntri∑
i=1

|T c
i |

∑
q∈Ri,c

wq ρ
0(q)ψc

h(q)

mc
q =

∑
i,Ri,c3q

|T c
i |wq ρ

0(q)

Ωc

T c
i

p

T c
i+1
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Polynomial reconstruction Positivity Limitation Stability

Properties

Rc =
ntri⋃
i=1

Ri,c

mc =

∫
Ωc

ρ0 dV = ρc

∫
ωc

dv =
∑

q∈Rc

mc
q

ψc =
1

mc

∑
q∈Rc

mc
q ψ

c
h(q)

mc
? = mc −

∑
p∈Q(∂ωc)

mc
p

ψc
? =

1
mc
?

∑
q∈Rc\Q(∂ωc)

mc
q ψ

c
h(q)

ψc =
mc
?

mc
ψc
? +

1
mc

∑
p∈Q(∂ωc)

mc
p ψ

c
h(p)
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Polynomial reconstruction Positivity Limitation Stability

Mass averaged value equations

mc(
1
ρ

)n+1
c = mc(

1
ρ

)n
c + ∆t

∑
p∈Q(∂ωc)

Un
p � lnpcnn

pc

mcUn+1
c = mcUn

c −∆t
∑

p∈Q(∂ωc)

F n
pc

mcen+1
c = mcen

c −∆t
∑

p∈Q(∂ωc)

Un
p � F n

pc

Decomposition

(
1
ρ

)n+1
c =

mc
?

mc
(
1
ρ

)c
? +

1
mc

∑
p∈Q(∂ωc)

mc
p

(
(
1
ρ

)c
h(p) +

∆t
mc

p
Un

p � lnpcnn
pc

)
Un+1

c =
mc
?

mc
Uc
? +

1
mc

∑
p∈Q(∂ωc)

mc
p

(
Uc

h(p)− ∆t
mc

p
F n

pc

)
en+1

c =
mc
?

mc
ec
? +

1
mc

∑
p∈Q(∂ωc)

mc
p

(
ec

h(p)− ∆t
mc

p
Un

p � F n
pc

)
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Polynomial reconstruction Positivity Limitation Stability

Procedure
Express these equations as a convex combination of first-order schemes

X. ZHANG, Y. XIA, C.-W. SHU, Maximum-principle-satisfying and
positivity-preserving high order discontinuous Galerkin schemes for
conservation laws on triangular meshes. J. Sci. Comp., 50:29-62, 2012.

J. CHENG and C.-W. SHU, Positivity-preserving Lagrangian scheme for
multi-material compressible flow. J. Comp. Phys., 257:143-168, 2014.

Specific volume∑
p∈Q(∂ωc)

lpcnpc = 0 ⇐⇒ lpcnpc = −
∑

q∈Q(∂ωc)\p

lqcnqc

hρp = (
1
ρ

)c
h(p) +

∆t
mc

p
Un

p � lnpcnn
pc

Hρ
p = (

1
ρ

)c
h(p) +

∆t
mc

p
(Un

p − V c) � lnpcnn
pc = (

1
ρ

)c
h(p) +

∆t
mc

p

∑
q∈Q(∂ωc)

V p
q � lnqcnn

qc

where V p
q =

{
Un

p, if p = q,
V c , if p 6= q.
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Polynomial reconstruction Positivity Limitation Stability

Momentum

hu
p = Uc

h(p)− ∆t
mc

p
F n

pc∑
p∈Q(∂ωc)

Fpc = 0 ⇐⇒ Fpc = −
∑

q∈Q(∂ωc)\p

Fqc

Hu
p = Uc

h(p)− ∆t
mc

p
(F n

pc − Fpc) = Uc
h(p)− ∆t

mc
p

∑
q∈Q(∂ωc)

Fp
q

where Fp
q =

{
F n

pc , if p = q,
Fqc , if p 6= q.

Total energy

he
p = ec

h(p)− ∆t
mc

p
Un

p � F n
pc

He
p = ec

h(p)− ∆t
mc

p
(Un

p � F n
pc − V c � Fpc) = ec

h(p)− ∆t
mc

p

∑
q∈Q(∂ωc)

V p
q � Fp

q
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Polynomial reconstruction Positivity Limitation Stability

Properties∑
p∈Q(∂ωc)

mc
p hρp =

∑
p∈Q(∂ωc)

mc
p Hρ

p∑
p∈Q(∂ωc)

mc
p hu

p =
∑

p∈Q(∂ωc)

mc
p Hu

p∑
p∈Q(∂ωc)

mc
p he

p =
∑

p∈Q(∂ωc)

mc
p He

p

Mimic the first-order scheme
1

∑
p∈Q(∂ωc)

Fpc = 0

2
∑

q∈Q(∂ωc)

Fp
q =

∑
q∈Q(∂ωc)

Pc
h (p)lnqcnn

qc −Mqc(V p
q − Uc

h(p))

3
∑

q∈Q(∂ωc)

V p
q � Fp

q = Pc
h (p)

∑
q∈Q(∂ωc)

V p
q � lnqcnn

qc −
∑

q∈Q(∂ωc)

V p
q � Mqc(V p

q − Uc
h(p))
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Polynomial reconstruction Positivity Limitation Stability

Artificial cell velocity and subcell forces
Fpc = Pc

h (p)lnpcnn
pc + (Mc −Mqc)(V c − Uc

h(p))

where Mc =
∑

p∈Q(∂ωc)

Mpc

V c =
1

NQ − 1
M−1

c

∑
q∈Q(∂ωc)

((Mc −Mqc)Uc
h(q)− Pc

h (q)lnqcnn
qc)

where NQ = |Q(∂ωc)| = NP (d − 1) and NP = |P(ωc)|

Convex combination

Wn+1
c =

1
mc

(
mc
? Wc

? +
∑

p∈Q(∂ωc)

mc
p Hc

p

)
,

where Hc
p = (Hρ

p ,H
u
p,He

p )t and mc = mc
? +

∑
p∈Q(∂ωc)

mc
p
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Polynomial reconstruction Positivity Limitation Stability

Positivity-preserving property
Finally, for the high-order cell-centered Lagrangian schemes presented, if

1 Wn
c ∈ G, Wc

? ∈ G and ∀p ∈ Q(∂ωc), Wc
h(p) ∈ G

2 ∆t ≤ Cv

mc
p (

1
ρ

)c
h(p)

|(Un
p − V c) � lnpcnn

pc |
, with Cv < min

(
1,

εc
h(p)

|Pc
h (p)| ( 1

ρ )c
h(p)

=
1

γ − 1

)

3 ∆t ≤
mc

p
1
2

∑
j

Zj lj
=

mc
p

mc

vn
c

ac Lc

Then Wn+1
c ∈ G
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Polynomial reconstruction Positivity Limitation Stability

Quantities involved
∀p ∈ Q(∂ωc), Wc

h(p) ∈ G

Wc
? =

∑
q∈Rc\Q(∂ωc)

mc
q Wc

h(q)

∑
p∈Rc\Q(∂ωc)

mc
p

∈ G or ∀q ∈ Rc \ Q(∂ωc), Wc
h(q) ∈ G

Positive limitation

(
1̃
ρ

)c
h = (

1
ρ

)c + θρ ((
1
ρ

)c
h − (

1
ρ

)c)

Ũ
c
h = Uc + θε (Uc

h − Uc)

ẽc
h = ec + θε (ec

h − ec)

where θρ ∈ [0,1] and θε ∈ [0,1]
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Polynomial reconstruction Positivity Limitation Stability

Riemann invariants differentials
dαt = dU � t
dα− = d( 1

ρ )− 1
ρa dU � n

dα+ = d( 1
ρ ) + 1

ρa dU � n

dαe = de − U � dU + P d( 1
ρ )

Mean value linearization
αc

t,h = Uc
h � t

αc
−,h = ( 1

ρ )c
h − 1

Zc
Uc

h � n

αc
+,h = ( 1

ρ )c
h + 1

Zc
Uc

h � n

αc
e,h = ec

h − Uc
0 � Uc

h + Pc
0 ( 1

ρ )c
h

Unit direction ensuring symmetry preservation

n =
Uc

0

‖Uc
0‖

and t = ez ×
Uc

0

‖Uc
0‖

Double specific volume limitation
Standard limitation on ( 1

ρ )h and on the Riemann invariants are performed

Only the most limiting procedure is retained to avoid spurious oscillations
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Polynomial reconstruction Positivity Limitation Stability

Stability
Same stability results on the piecewise constant part Wc of the numerical
solution Wc

h as for the first-order schemes
To obtain the same stability properties on the whole piecewise polynomial
solution Wh, the limitation at time tn has to ensure that

∀x ∈ ω, Wh(x) ∈ G

Then

‖(1
ρ

)n
h‖L1 = ‖ 1

ρ0 ‖L1

‖K n
h ‖L1 < ‖en

h‖L1

‖en
h‖L1 = ‖e0‖L1

‖Un
h‖2

L2
< mω + ‖en

h‖2
L2
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Cylindrical Sod shock problem
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Figure: Final grids on a 100x5 polar mesh, at final time t = 1
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Cylindrical Sod shock problem
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Figure: Density profile on a 100x5 polar mesh, at final time t = 1
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Sedov point blast problem on a Cartesian grid
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Figure: Final grids on a 30x30 Cartesian mesh, at final time t = 1
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Sedov point blast problem on a Cartesian grid
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Figure: Density and pressure profiles on a 30x30 Cartesian mesh, at final time t = 1

March 27th, 2014 François Vilar Positivity-preserving cell-centered scheme 36 / 52



CCLS Descriptions 1st order High-order Numerical results Conclusion

Sedov point blast problem on a polygonal grid
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Figure: Final grids on mesh made of 775 polygonal cells, at final time t = 1
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Sedov point blast problem on a polygonal grid
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Figure: Density and pressure profiles on mesh made of 775 polygonal cells, at final
time t = 1
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Cylindrical Sedov point blast problem
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Figure: Final grids on a 30x5 polar mesh, at final time t = 1
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Cylindrical Sedov point blast problem
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Figure: Density and pressure profiles on a 30x5 polar mesh, at final time t = 1
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Noh problem
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Figure: Final grids on a Cartesian grid made of 50 × 50 cells, at final time t = 0.6
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Noh problem
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Figure: Density profile on a Cartesian grid made of 50 × 50 cells, at final time t = 0.6
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Cylindrical Noh problem
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Figure: Final grids on a 50x5 polar mesh, at final time t = 0.6
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Cylindrical Noh problem
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Figure: Density profile on a 50x5 polar mesh, at final time t = 0.6
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Saltzman problem
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Figure: Final grids on a 10x100 deformed Cartesian mesh, at time t = 0.6
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Saltzman problem
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Figure: Density and pressure profiles on a 10x100 deformed Cartesian mesh, at time
t = 0.6
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Saltzman problem
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Figure: Final grids on a 10x100 deformed Cartesian mesh, at time t = 0.9
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Saltzman problem
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Figure: Density and pressure profiles on a 10x100 deformed Cartesian mesh, at time
t = 0.9
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Taylor-Green vortex problem
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Figure: Final grids at final time t = 0.75, on a 10x10 Cartesian mesh
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Taylor-Green vortex problem

L1 L2 L∞
h Eh

L1
qh

L1
Eh

L2
qh

L2
Eh

L∞ qh
L∞

1
10 7.31E-2 0.97 8.90E-2 0.96 2.19E-1 0.91
1

20 3.74E-2 0.99 4.57E-2 0.98 1.17E-1 0.95
1

40 1.89E-2 0.99 2.31E-2 0.99 6.06E-2 0.97
1

80 9.50E-3 1.00 1.16E-2 1.00 3.09E-2 0.99
1

160 4.76E-3 - 5.81E-3 - 1.56E-2 -

Table: Rate of convergence computed on the velocity at time t = 0.1.
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Taylor-Green vortex problem

L1 L2 L∞
h Eh

L1
qh

L1
Eh

L2
qh

L2
Eh

L∞ qh
L∞

1
10 1.00E-2 2.14 1.40E-2 2.05 6.25E-2 1.58
1

20 2.27E-3 2.17 3.39E-3 2.14 2.10E-2 1.65
1

40 5.05E-4 2.14 7.66E-4 2.16 6.67E-3 1.92
1

80 1.14E-4 2.13 1.71E-4 2.16 1.76E-3 1.87
1

160 2.61E-5 - 3.83E-5 - 4.81E-4 -

Table: Rate of convergence computed on the velocity at time t = 0.1.
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Conclusions
Demonstration of the positivity-preserving criteria of a whole class of
cell-centered Lagrangian scheme, under particular time step constraints
Extension of the demonstration to high-order of accuracy, under
particular limitation of the solution
Demonstration of L1 stability of the specific volume and total energy
Control of the L1 norm of the kinetic energy and of the L2 norm of the
velocity
Improvement of the robustness

Perspectives
Extension of the numerical applications to higher-order of accuracy
Extension of the CCDG to solid dynamics such as hyperelasticity

March 27th, 2014 François Vilar Positivity-preserving cell-centered scheme 52 / 52



CCLS Descriptions 1st order High-order Numerical results Conclusion

F. VILAR, P.-H. MAIRE AND R. ABGRALL, Cell-centered discontinuous
Galerkin discretizations for two-dimensional scalar conservation laws on
unstructured grids and for one-dimensional Lagrangian hydrodynamics.
Computers and Fluids, 2010.

F. VILAR, Cell-centered discontinuous Galerkin discretization for
two-dimensional Lagrangian hydrodynamics. Computers and Fluids,
2012.

F. VILAR, P.-H. MAIRE AND R. ABGRALL, A discontinuous Galerkin
discretization for solving the two-dimensional gas dynamics equations
written under total Lagrangian formulation on general unstructured grids.
J. of Comp. Phys., 2014. Under review

March 27th, 2014 François Vilar Positivity-preserving cell-centered scheme 52 / 52


	Cell-Centered Lagrangian schemes
	Lagrangian and Eulerian descriptions
	Flow transformation
	Governing equations
	Equation of state

	Compatible first-order positivity-preserving discretization
	Schemes
	Time step constraint
	Positivity property of the first-order schemes
	Stability

	High-order positivity-preserving extension
	Polynomial reconstruction
	Positivity
	Limitation
	Stability

	Numerical results
	Conclusion



