Positivity-preserving cell-centered Lagrangian schemes

F. Vilar and C.-W. Shu

Brown University, Division of Applied Mathematics 182 George Street, Providence, RI 02912

March 27th, 2014

- A - E - N

- 2 Lagrangian and Eulerian descriptions
- Compatible first-order positivity-preserving discretization
- 4 High-order positivity-preserving extension
- 5 Numerical results
- 6 Conclusion

CCLS			

Cell-Centered Lagrangian schemes

- 2 Lagrangian and Eulerian descriptions
- 3 Compatible first-order positivity-preserving discretization
- 4 High-order positivity-preserving extension
- 5 Numerical results
- 6 Conclusion

CCLS			

Finite volume schemes on moving mesh

- J. K. Dukowicz: CAVEAT scheme, 1986
- B. Després: GLACE scheme, 2005
- P.-H. Maire: EUCCLHYD scheme, 2007
- J. Cheng: High-order ENO conservative Lagrangian scheme, 2007
- G. Kluth: Cell-centered Lagrangian scheme for the hyperelasticity, 2010
- S. Del Pino: Curvilinear finite-volume Lagrangian scheme, 2010
- P. Hoch: Finite volume method on unstructured conical meshes, 2011

DG scheme on initial mesh

- R. Loubère: DG scheme for Lagrangian hydrodynamics, 2004
- Z. Jia: DG spectral finite element for Lagrangian hydrodynamics, 2010
- F. Vilar: High-order DG scheme for Lagrangian hydrodynamics, 2012

• • • • • • • • • • • • •

CCLS	Descriptions	1st order	High-order	Numerical results	Conclusion
Flow transformation		GC	verning equations		Equation of state

- 2 Lagrangian and Eulerian descriptions
 - 3 Compatible first-order positivity-preserving discretization
- 4 High-order positivity-preserving extension
- 5 Numerical results
- 6 Conclusion

 CCLS
 Descriptions
 1st order
 High-order
 Numerical results
 Conclusion

 Flow transformation
 Governing equations
 Governing equations
 Equation of state

Flow transformation of the fluid

• The fluid flow is described mathematically by the continuous transformation, Φ , so-called mapping such as $\Phi : \mathbf{X} \longrightarrow \mathbf{x} = \Phi(\mathbf{X}, t)$

Figure: Notation for the flow map.

where **X** is the Lagrangian (initial) coordinate, **x** the Eulerian (actual) coordinate, **N** the Lagrangian normal and **n** the Eulerian normal

Deformation Jacobian matrix: deformation gradient tensor

• $\mathsf{F} = \nabla_X \Phi = \frac{\partial x}{\partial X}$ and $J = \det \mathsf{F} > 0$

CCLS Description		High-order	Numerical results	Conclusion
Flow transformation		Governing equations	Eq	uation of state
Trajectory equation				
• $\frac{\mathrm{d} \boldsymbol{x}}{\mathrm{d} t} = \boldsymbol{U}(\boldsymbol{x}, t), \boldsymbol{x}(t)$	$(\pmb{X},0)=\pmb{X}$			
Material time deriva	ative			
• $\frac{\mathrm{d}}{\mathrm{d}t}f(\boldsymbol{x},t) = \frac{\partial}{\partial t}f(\boldsymbol{x},t)$	$t) + \boldsymbol{U} \cdot \nabla_x f(\boldsymbol{x}, \boldsymbol{x})$	t)		
Transformation form	nulas			
• Fd <i>X</i> = d <i>x</i>	Ch	ange of shape of	of infinitesimal ve	ctors
• $\rho^{0} = \rho \boldsymbol{J}$	Ma	iss conservatior	ı	
• $JdV = dv$	Me	easure of the vo	lume change	
• $JF^{-t}NdS = nds$	Na	nson formula		
Differential operator	rs transforma	tions		
• $\nabla_x P = \frac{1}{J} \nabla_X \cdot (P J)$	F ^{-t}) Gra	adient operator		
• $\nabla_x \cdot \boldsymbol{U} = \frac{1}{J} \nabla_X \cdot (JF)$	¹ <i>U</i>) Div	vergence operation	tor	
March 27th, 2014	François Vilar	Positivity-preservir	g cell-centered scheme	4/52

	Descriptions		
		ning equations	Equation of state

Ideal EOS for the perfect gas

•
$$P = \rho (\gamma - 1) \varepsilon$$
 where $a = \sqrt{\frac{\gamma P}{\rho}}$

Stiffened EOS for water

•
$$P = \rho (\gamma - 1) \varepsilon - \gamma P^{\star}$$
 where $a = \sqrt{\frac{\gamma (P + P^{\star})}{\rho}}$

Jones-Wilkins-Lee (JWL) EOS for the detonation-products gas

•
$$P = \rho (\gamma - 1) \varepsilon + f(\rho)$$
 where $a = \sqrt{\frac{\gamma P - f(\rho) + \rho f'(\rho)}{\rho}}$

< □ > < 同 > < 回 > < 回

	1st order		
Schemes	Time step constraint	Positivity	Stability

- 2 Lagrangian and Eulerian descriptions
- Compatible first-order positivity-preserving discretization
 - 4 High-order positivity-preserving extension
 - 5 Numerical results
- 6 Conclusion

CCLSDescriptions1st orderHigh-orderNumerical resultsConclusionSchemesTime step constraintPositivityStabilityMass averaged values equations•
$$m_c(\frac{1}{\rho})_c^{n+1} = m_c(\frac{1}{\rho})_c^n + \Delta t \sum_{p \in Q(\partial \omega_c)} U_p^n \cdot I_{pc}^n n_{pc}^n$$
• $m_c U_c^{n+1} = m_c U_c^n - \Delta t \sum_{p \in Q(\partial \omega_c)} F_{pc}^n$ • $m_c e_c^{n+1} = m_c e_c^n - \Delta t \sum_{p \in Q(\partial \omega_c)} U_p^n \cdot F_{pc}^n$

Definitions

•
$$\psi_c = \frac{1}{m_c} \int_{\Omega_c} \rho^0 \psi \, \mathrm{d}V = \frac{1}{m_c} \int_{\omega_c} \rho \, \psi \, \mathrm{d}V$$
 mean value
• $F_{\rho c} = P_c \, I_{\rho c} \, \mathbf{n}_{\rho c} - \mathcal{M}_{\rho c} (\mathbf{U}_{\rho} - \mathbf{U}_c)$ subcell forces

Momentum and total energy conservation

•
$$\sum_{c \in \mathcal{C}(p)} \boldsymbol{F}_{pc} = \boldsymbol{0} \implies (\sum_{c \in \mathcal{C}(p)} \mathsf{M}_{pc}) \boldsymbol{U}_{p} = \sum_{c \in \mathcal{C}(p)} (P_{c} I_{pc} \boldsymbol{n}_{pc} + \mathsf{M}_{pc} \boldsymbol{U}_{c})$$

	CLS	1st order		
S	chemes			

GLACE assumptions

a)
$$\mathcal{Q}(\partial \omega_c) = \mathcal{P}(\omega_c)$$
 the node set
b) $l_{pc} \boldsymbol{n}_{pc} = l_{pc}^- \boldsymbol{n}_{pc}^- + l_{pc}^+ \boldsymbol{n}_{pc}^+ = \frac{1}{2} l_{p-p} \boldsymbol{n}_{p-p} + \frac{1}{2} l_{pp^+} \boldsymbol{n}_{pp^+}$
c) $M_{pc} = Z_{pc} l_{pc} \boldsymbol{n}_{pc} \otimes \boldsymbol{n}_{pc}$
d) $\boldsymbol{U}_p = (\sum_{c \in \mathcal{C}(p)} M_{pc})^{-1} \sum_{c \in \mathcal{C}(p)} (P_c l_{pc} \boldsymbol{n}_{pc} + M_{pc} \boldsymbol{U}_c)$

EUCCLHYD assumptions

• Same assumptions a), b) and d) as GLACE

c)
$$M_{pc} = Z_{pc}^{-} l_{pc}^{-} \boldsymbol{n}_{pc}^{-} \otimes \boldsymbol{n}_{pc}^{-} + Z_{pc}^{+} l_{pc}^{+} \boldsymbol{n}_{pc}^{+} \otimes \boldsymbol{n}_{pc}^{+}$$

- **- -** ► → -

Cell-centered DG (CCDG) assumptions

a)
$$\mathcal{Q}(\partial \omega_c) = \bigcup_{p \in \mathcal{P}(\omega_c)} (\mathcal{Q}(pp^+) \setminus \{p^+\})$$

b) For $q \in \mathcal{Q}(pp^+)$, $l_q \mathbf{n}_{q|_{pp^+}} = \int_0^1 \lambda_q(\zeta) \sum_{k \in \mathcal{Q}(pp^+)} \frac{\partial \lambda_k}{\partial \zeta} (\mathbf{x}_k \times \mathbf{e}_z) d\zeta$
For $p \in \mathcal{P}(\omega_c)$, $l_{pc} \mathbf{n}_{pc} = l_p \mathbf{n}_{p|_{p^-p}} + l_p \mathbf{n}_{p|_{pp^+}}$
For $q \in \mathcal{Q}(pp^+) \setminus \{p, p^+\}$, $l_{qc} \mathbf{n}_{qc} = l_q \mathbf{n}_{q|_{pp^+}}$

	1st order		
Schemes		Positivity	

CCDG assumptions

c) For
$$p \in \mathcal{P}(\omega_c)$$
, $M_{pc} = Z_{pc}^- l_{pc}^- \boldsymbol{n}_{pc}^- \otimes \boldsymbol{n}_{pc}^- + Z_{pc}^+ l_{pc}^+ \boldsymbol{n}_{pc}^+ \otimes \boldsymbol{n}_{pc}^+$

 $\text{For } q \in \mathcal{Q}(\textit{pp}^+) \setminus \{\textit{p},\textit{p}^+\}, \quad \mathsf{M}_{\textit{pc}} = \textit{Z}_{\textit{pc}}\textit{I}_{\textit{pc}}\textit{n}_{\textit{pc}} \otimes \textit{n}_{\textit{pc}}$

d) For
$$p \in \mathcal{P}(\omega_c)$$
, $\boldsymbol{U}_p = (\sum_{c \in \mathcal{C}(p)} M_{pc})^{-1} \sum_{c \in \mathcal{C}(p)} (\boldsymbol{P}_c \, \boldsymbol{I}_{pc} \, \boldsymbol{n}_{pc} + M_{pc} \, \boldsymbol{U}_c)$

$$\mathsf{For} \ q \in \mathcal{Q}(pp^+) \setminus \{p, p^+\}, \quad \boldsymbol{U}_p = \frac{Z_{pL} \ \boldsymbol{U}_L + Z_{pR} \ \boldsymbol{U}_R}{Z_{pL} + Z_{pR}} - \frac{P_R - P_L}{Z_{pL} + Z_{pR}} \ \boldsymbol{n}_{pL}$$

イロン イ理 とく ヨン イヨン

æ

	1st order		
	Time step constraint	Positivity	

CFL condition

• System eigenvalues: -a, 0, a

$$orall oldsymbol{c}, \quad \Delta t \leq C_e \; rac{oldsymbol{v}_c^n}{oldsymbol{a}_c \, oldsymbol{L}_c}$$

Volume control

Relative volume variation:

$$rac{v_c^{n+1}-v_c^n|}{v_c^n}\leq C_v$$

$$orall c, \quad \Delta t \leq C_{m{v}} \; rac{m{v}_c^n}{|\displaystyle\sum_{m{
ho}\in\mathcal{Q}(\partial\omega_c)}m{U}_{m{
ho}}^n \, m{I}_{m{
hoc}c}^nm{n}_{m{
hoc}c}^n|}$$

• • • • • • • • • • • • •

CCLS Schemes	Descriptions	1st order Time step constraint	High-order	Numerical results Positivity	Conclusion Stability
Admissible s	et				
• $W = (\frac{1}{\rho}, \boldsymbol{U},$, <i>e</i>) ^t				
• <i>G</i> = {W,	$\rho > 0, \ \varepsilon = \boldsymbol{\epsilon}$	$p-\frac{1}{2}\boldsymbol{U}^2>0,$	$a^2 = (\partial_{\rho} P)$	$ _{s} > 0\}$	
Ideal EOS					
• If $\rho > 0$ t	then $\varepsilon > 0$	$\iff a^2 = \gamma ($	$(\gamma - 1)\varepsilon > 0$	$P \iff P = \rho(\gamma - \gamma)$	1) $\varepsilon > 0$
• $G = \{W,$	ho > 0 and $arepsilon$	$\varepsilon = \boldsymbol{e} - \frac{1}{2} \boldsymbol{U}^2$	> 0} conv	/ex set	
First-order po	ositivity-pre	serving sc	heme		
• If $W_c^n = (($	$(rac{1}{ ho})^n_c, oldsymbol{U}^n_c, oldsymbol{e}^n_c)^{ ext{t}}$	∈ <i>G</i> , then ur	nder which o	constraint $W_c^{n+1} \in$	G ?
Positive dens					
• If $(\frac{1}{\rho})^n_c > 0$) then $(\frac{1}{\rho})$	$c^{n+1} > 0 \iff$	$\rightarrow (\frac{1}{\rho})^n_c > -$	$\frac{\Delta t}{m_c} \sum_{p \in \mathcal{Q}(\partial \omega_c)} \boldsymbol{U}_p^n \boldsymbol{.} l_p^r$	$\int_{D_c}^{n} \mathbf{n}_{pc}^{n}$
• Thus if <i>C_v</i>	< 1 then	$(\frac{1}{\rho})_c^n = \frac{v_c^n}{m_c} >$	$> 0 \implies (\frac{1}{\rho})$	$)_{c}^{n+1} = rac{v_{c}^{n+1}}{m_{c}} > 0$	

•
$$B_c = \sum_{p} M_{pc} \boldsymbol{V}_{p} \cdot \boldsymbol{V}_{p} - \frac{\lambda_c}{2} (\sum_{p} M_{pc} \boldsymbol{V}_{p})^2$$

Entropy

• $TdS = d\varepsilon + Pd(\frac{1}{\rho}) \ge 0$ Gibbs identity + second law of thermodynamics

Discrete entropy inequality

•
$$\lambda_c B_c = \varepsilon_c^{n+1} - A_c = \varepsilon_c^{n+1} - \varepsilon_c^n + P_c^n \left(\left(\frac{1}{\rho} \right)_c^{n+1} - \left(\frac{1}{\rho} \right)_c^n \right)$$

March 27th, 2014

			1st order			
					Positivity	
Theo	rem					
	•	•	•		negative diagona chgorin theorem)	l entries
$B_{c} \geq$	0					
● If	$\lambda_{c} \leq rac{2}{Z_{i} I_{i}}$	then H	<i>⊪</i> ≥ 0			
• If	$\lambda_{c} \leq \overline{\sum_{j}}$	$\frac{2}{Z_j I_j \boldsymbol{n}_i \boldsymbol{\cdot} \boldsymbol{n}_j }$	then H _{ii}	$-\sum_{j\neq i} H_{ij} $	≥ 0	
• T	hus if λ_c	$r \leq rac{2}{\sum_{j} Z_j I_j}$	$\Longleftrightarrow \Delta t \leq \frac{1}{\frac{1}{2}}$	$\frac{m_c}{\sum_j Z_j I_j} \text{th}$	en $B_c \ge 0$	
Acou	stic impe	edance	$Z_c = \rho_c a_c$			

• If
$$\Delta t \leq \frac{v_c^n}{a_c L_c}$$
 where $L_c = \frac{1}{2} \sum_j I_j$ then $B_c \geq 0$

March 27th, 2014

COLS Descriptions 1st order High-order Numerical results Conclusion Schemes Time step constraint Positivity Stability

Positivity-preserving property

Finally, for the first-order finite volume cell-centered Lagrangian schemes, if

• $W_c^n \in G$

Then
$$\mathsf{W}^{n+1}_c\in G$$
 and $arepsilon^{n+1}_c-arepsilon^n_c+\mathsf{P}^n_c\left((rac{1}{
ho})^{n+1}_c-(rac{1}{
ho})^n_c
ight)\geq 0$

			1st order		
				Positivity	Stability
Norm	definitio	ns			

•
$$\|\psi\|_{L_1} = \int_{\Omega} \rho^0 |\psi| \, \mathrm{d}V = \int_{\omega} \rho |\psi| \, \mathrm{d}V$$

• $\|\psi\|_{L_2} = \left(\int_{\Omega} \rho^0 \, \psi^2 \, \mathrm{d}V\right)^{\frac{1}{2}} = \left(\int_{\omega} \rho \, \psi^2 \, \mathrm{d}V\right)$

Stability analysis

• For sake of simplicity periodic boundary conditions (PBC) are considered

5

- ψ_h^n is the piecewise constant numerical solution such as $\psi_{h|_{\omega_c}}^n = \psi_c^n$
- We assume the initial solution vector W⁰_c = ((¹/_ρ)⁰_c, U⁰_c, e⁰_c)^t on cell ω_c is computed through

$$\mathsf{W}_c^0 = \frac{1}{m_c} \int_{\Omega_c} \rho^0(\boldsymbol{X}) \, \mathsf{W}^0(\boldsymbol{X}) \, \mathrm{d} \boldsymbol{V},$$

where $W^0 = (\frac{1}{\rho^0}, \boldsymbol{U}^0, \boldsymbol{e}^0)^t$ and $\frac{1}{\rho^0}, \boldsymbol{U}^0, \boldsymbol{e}^0$ respectively are the initial specific volume, velocity and total energy

CCLSDescriptions1st orderHigh-orderNumerical resultsConclusionSchemesTime step constraintPositivityStabilitySpecific volume• Positivity
$$|(\frac{1}{\rho})_c^n| = (\frac{1}{\rho})_c^n$$
• Conservation $\sum_c m_c (\frac{1}{\rho})_c^n = \sum_c m_c (\frac{1}{\rho})_c^{n-1}$ (since PBC + $\sum_{c \in C(\rho)} l_{\rho c} n_{\rho c} = 0$) $||(\frac{1}{\rho})_n^n||_{L_1} = \sum_c m_c |(\frac{1}{\rho})_c^n| = \sum_c m_c |(\frac{1}{\rho})_c^{n-1}| = ||(\frac{1}{\rho})_h^{n-1}||_{L_1}$ Total energy• Positivity $|e_c^n| = e_c^n$ (since $\varepsilon_c^n > 0 \iff e_c^n > \frac{1}{2}(\boldsymbol{U}_c^n)^2 \ge 0$)• Conservation $\sum_c m_c e_c^n = \sum_c m_c e_c^{n-1}$ (since PBC + $\sum_{c \in C(\rho)} \boldsymbol{F}_{\rho c} = 0$)

$$\|e_h^n\|_{L_1} = \sum_c m_c \, |e_c^n| = \sum_c m_c \, |e_c^{n-1}| = \|e_h^{n-1}\|_{L_1}$$

	1st order		
		Positivity	Stability

Kinetic energy and velocity

•
$$K = \frac{1}{2} U^2$$
 specific kinetic energy

•
$$\frac{1}{2}(\boldsymbol{U}_{c}^{n})^{2} < \boldsymbol{e}_{c}^{n} \implies \frac{1}{2}\sum_{c}m_{c}(\boldsymbol{U}_{c}^{n})^{2} < \sum_{c}m_{c}\,\boldsymbol{e}_{c}^{n}$$

•
$$2m_c e_c^n = 2\sqrt{m_c} \sqrt{m_c} (e_c^n)^2 \le m_c + m_c (e_c^n)^2$$

•
$$\sum_{c} m_{c} (\boldsymbol{U}_{c}^{n})^{2} < \sum_{c} m_{c} + \sum_{c} m_{c} (\boldsymbol{e}_{c}^{n})^{2}$$

Stability

•
$$\|(\frac{1}{\rho})_{h}^{n}\|_{L_{1}} = \|\frac{1}{\rho^{0}}\|_{L_{1}}$$

• $\|K_h^n\|_{L_1} < \|e_h^n\|_{L_1}$

•
$$\|e_h^n\|_{L_1} = \|e^0\|_{L_1}$$

•
$$\| \boldsymbol{U}_h^n \|_{L_2}^2 < m_\omega + \| \boldsymbol{e}_h^n \|_{L_2}^2$$

イロン イロン イヨン イヨン

2

			High-order		
Polynomial reconstru	uction	Positivity		Limitation	Stability

- 2 Lagrangian and Eulerian descriptions
- 3 Compatible first-order positivity-preserving discretization
- 4 High-order positivity-preserving extension
- 5 Numerical results
- 6 Conclusion

			High-order	
Polynomial reconstruction				

Control point solvers

In the control point solvers, *F_{pc}* and *U_p*, the interpolation values at point *p* of the high-order approximations of the pressure and velocity, *P^c_h(p)* and *U^c_h(p)*, are used instead of the mean values *P_c* and *U_c*

High-order extension

- Piecewise linear approximations of the pressure and velocity, *P_h(p)* and *U_h(p)*, are constructed using the mean values, *P_c* and *U_c*, over the cells (GLACE and EUCCLHYD)
- A piecewise polynomial reconstruction of the solution vector W_h(**x**) = ((¹/_ρ)_h(**x**), **U**_h(**x**), e_h(**x**))^t is assumed, such as its mass averaged value over cell ω_c corresponds to W_c (CCDG)
 - The pressure is pointwisely defined through the EOS, such as

$$P_h(\boldsymbol{x}) = \rho_h(\boldsymbol{x}) \left(\gamma - 1\right) \left(\boldsymbol{e}_h(\boldsymbol{x}) - \frac{1}{2} (\boldsymbol{U}_h(\boldsymbol{x})^2)\right)$$

•
$$m_q^c = \sum_{i,\mathcal{R}_{i,c}\ni q} |\mathcal{T}_i^c| w_q \rho^0(q)$$

		High-order	
	Positivity		

Properti<u>es</u>

•
$$\mathcal{R}_{c} = \bigcup_{i=1}^{ntri} \mathcal{R}_{i,c}$$

• $m_{c} = \int_{\Omega_{c}} \rho^{0} dV = \rho_{c} \int_{\omega_{c}} dv = \sum_{q \in \mathcal{R}_{c}} m_{q}^{c}$
• $\psi_{c} = \frac{1}{m_{c}} \sum_{q \in \mathcal{R}_{c}} m_{q}^{c} \psi_{h}^{c}(q)$
• $m_{\star}^{c} = m_{c} - \sum_{p \in \mathcal{Q}(\partial \omega_{c})} m_{p}^{c}$
• $\psi_{\star}^{c} = \frac{1}{m_{\star}^{c}} \sum_{q \in \mathcal{R}_{c} \setminus \mathcal{Q}(\partial \omega_{c})} m_{q}^{c} \psi_{h}^{c}(q)$
• $\psi_{c} = \frac{m_{\star}^{c}}{m_{c}} \psi_{\star}^{c} + \frac{1}{m_{c}} \sum_{p \in \mathcal{Q}(\partial \omega_{c})} m_{p}^{c} \psi_{h}^{c}(p)$

<ロ> <問> <問> < 同> < 同> 、

2

•
$$(\frac{1}{\rho})_{c}^{n+1} = \frac{m_{\star}^{c}}{m_{c}}(\frac{1}{\rho})_{\star}^{c} + \frac{1}{m_{c}}\sum_{p\in\mathcal{Q}(\partial\omega_{c})}m_{p}^{c}\left((\frac{1}{\rho})_{h}^{c}(p) + \frac{\Delta t}{m_{p}^{c}}\boldsymbol{U}_{p}^{n}\cdot\boldsymbol{I}_{pc}^{n}\boldsymbol{n}_{pc}^{n}\right)$$

• $\boldsymbol{U}_{c}^{n+1} = \frac{m_{\star}^{c}}{m_{c}}\boldsymbol{U}_{\star}^{c} + \frac{1}{m_{c}}\sum_{p\in\mathcal{Q}(\partial\omega_{c})}m_{p}^{c}\left(\boldsymbol{U}_{h}^{c}(p) - \frac{\Delta t}{m_{p}^{c}}\boldsymbol{F}_{pc}^{n}\right)$
• $\boldsymbol{e}_{c}^{n+1} = \frac{m_{\star}^{c}}{m_{c}}\boldsymbol{e}_{\star}^{c} + \frac{1}{m_{c}}\sum_{p\in\mathcal{Q}(\partial\omega_{c})}m_{p}^{c}\left(\boldsymbol{e}_{h}^{c}(p) - \frac{\Delta t}{m_{p}^{c}}\boldsymbol{U}_{p}^{n}\cdot\boldsymbol{F}_{pc}^{n}\right)$

				High-order					
F	Polynomial recons	truction	Positivity		Limitation	Stability			
Procedure									
 Exp 	oress the	se equations	s as a conve	ex combinat	ion of first-order s	chemes			
	X. ZHANG, Y. XIA, CW. SHU, Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. J. Sci. Comp., 50:29-62, 2012.								
					Lagrangian schem ., 257:143-168, 201				
Specific volume									
7		•							

•
$$\sum_{p \in \mathcal{Q}(\partial \omega_c)} l_{pc} \mathbf{n}_{pc} = \mathbf{0} \iff l_{pc} \mathbf{n}_{pc} = -\sum_{q \in \mathcal{Q}(\partial \omega_c) \setminus p} l_{qc} \mathbf{n}_{qc}$$

•
$$h_p^{\rho} = (\frac{1}{\rho})_h^c(p) + \frac{\Delta t}{m_p^c} \mathbf{U}_p^n \cdot l_{pc}^n \mathbf{n}_{pc}^n$$

•
$$H_p^{\rho} = (\frac{1}{\rho})_h^c(p) + \frac{\Delta t}{m_p^c} (\mathbf{U}_p^n - \mathbf{V}_c) \cdot l_{pc}^n \mathbf{n}_{pc}^n = (\frac{1}{\rho})_h^c(p) + \frac{\Delta t}{m_p^c} \sum_{q \in \mathcal{Q}(\partial \omega_c)} \mathbf{V}_q^p \cdot l_{qc}^n \mathbf{n}_{qc}^n$$

where
$$\mathbf{V}_q^{\rho} = \begin{cases} \mathbf{U}_p^n, & \text{if } p = q, \\ \mathbf{V}_c, & \text{if } p \neq q. \end{cases}$$

CCLS	Descriptions		High-order	Numerical results	
Polynomial r	reconstruction	Positivity		Limitation	Stability

Momentum

•
$$\boldsymbol{h}_{p}^{u} = \boldsymbol{U}_{h}^{c}(p) - \frac{\Delta t}{m_{p}^{c}} \boldsymbol{F}_{pc}^{n}$$

• $\sum_{p \in \mathcal{Q}(\partial \omega_{c})} \mathfrak{F}_{pc} = \mathbf{0} \iff \mathfrak{F}_{pc} = -\sum_{q \in \mathcal{Q}(\partial \omega_{c}) \setminus p} \mathfrak{F}_{qc}$
• $\boldsymbol{H}_{p}^{u} = \boldsymbol{U}_{h}^{c}(p) - \frac{\Delta t}{m_{p}^{c}} (\boldsymbol{F}_{pc}^{n} - \mathfrak{F}_{pc}) = \boldsymbol{U}_{h}^{c}(p) - \frac{\Delta t}{m_{p}^{c}} \sum_{q \in \mathcal{Q}(\partial \omega_{c})} \mathfrak{F}_{q}^{p}$
where $\mathfrak{F}_{q}^{p} = \begin{cases} \boldsymbol{F}_{pc}^{n}, & \text{if } p = q, \\ \mathfrak{F}_{qc}, & \text{if } p \neq q. \end{cases}$

Total energy

•
$$h_p^e = e_h^c(p) - \frac{\Delta t}{m_p^c} U_p^n \cdot F_{pc}^n$$

• $H_p^e = e_h^c(p) - \frac{\Delta t}{m_p^c} (U_p^n \cdot F_{pc}^n - V_c \cdot \mathfrak{F}_{pc}) = e_h^c(p) - \frac{\Delta t}{m_p^c} \sum_{q \in \mathcal{Q}(\partial \omega_c)} V_q^p \cdot \mathfrak{F}_q^p$

CCLS
 Descriptions
 1st order
 High-order
 Numerical results
 Conclusion

 Polynomial reconstruction
 Positivity
 Limitation
 Stability

 Properties

$$\sum_{\rho \in \mathcal{Q}(\partial \omega_c)} m_\rho^c h_\rho^\rho = \sum_{\rho \in \mathcal{Q}(\partial \omega_c)} m_\rho^c H_\rho^\rho$$
 $\sum_{\rho \in \mathcal{Q}(\partial \omega_c)} m_\rho^c h_\rho^u = \sum_{\rho \in \mathcal{Q}(\partial \omega_c)} m_\rho^c H_\rho^u$
 $\sum_{\rho \in \mathcal{Q}(\partial \omega_c)} m_\rho^c h_\rho^e = \sum_{\rho \in \mathcal{Q}(\partial \omega_c)} m_\rho^c H_\rho^e$

Mimic the first-order scheme

$$\sum_{p \in \mathcal{Q}(\partial \omega_c)} \mathfrak{F}_{pc} = \mathbf{0}$$

$$\sum_{q \in \mathcal{Q}(\partial \omega_c)} \mathfrak{F}_{q}^{p} = \sum_{q \in \mathcal{Q}(\partial \omega_c)} P_{h}^{c}(p) I_{qc}^{n} \mathbf{n}_{qc}^{n} - \mathsf{M}_{qc}(\mathbf{V}_{q}^{p} - \mathbf{U}_{h}^{c}(p))$$

$$\sum_{q \in \mathcal{Q}(\partial \omega_c)} \mathbf{V}_{q}^{p} \cdot \mathfrak{F}_{q}^{p} = P_{h}^{c}(p) \sum_{q \in \mathcal{Q}(\partial \omega_c)} \mathbf{V}_{q}^{p} \cdot I_{qc}^{n} \mathbf{n}_{qc}^{n} - \sum_{q \in \mathcal{Q}(\partial \omega_c)} \mathbf{V}_{q}^{p} \cdot \mathsf{M}_{qc}(\mathbf{V}_{q}^{p} - \mathbf{U}_{h}^{c}(p))$$

CCI	LS I			High-order		Conclusion
Poly	ynomial reconstruc	ction	Positivity		Limitation	Stability

Positivity-preserving property

Finally, for the high-order cell-centered Lagrangian schemes presented, if

a
$$\Delta t \leq C_{v} \frac{m_{\rho}^{c} (\frac{1}{\rho})_{h}^{c}(\rho)}{|(\boldsymbol{U}_{\rho}^{n} - \boldsymbol{V}_{c}) \cdot l_{\rho c}^{n} \boldsymbol{n}_{\rho c}^{n}|}$$
, with $C_{v} < \min\left(1, \frac{\varepsilon_{h}^{c}(\rho)}{|\boldsymbol{P}_{h}^{c}(\rho)|(\frac{1}{\rho})_{h}^{c}(\rho)} = \frac{1}{\gamma - 1}\right)$
a $\Delta t \leq \frac{m_{\rho}^{c}}{\frac{1}{2} \sum_{j} Z_{j} I_{j}} = \frac{m_{\rho}^{c}}{m_{c}} \frac{v_{c}^{n}}{a_{c} L_{c}}$
Then $W_{c}^{n+1} \in G$

.

ヘロト 人間 とうほう 人間 とう

а.

		High-order		
			Limitation	

Riemann invariants differentials

- $d\alpha_t = d\boldsymbol{U} \cdot \boldsymbol{t}$
- $d\alpha_- = d(\frac{1}{\rho}) \frac{1}{\rho a} d\boldsymbol{U} \cdot \boldsymbol{n}$
- $d\alpha_+ = d(\frac{1}{\rho}) + \frac{1}{\rho a} d\boldsymbol{U} \cdot \boldsymbol{n}$
- $d\alpha_e = de U \cdot dU + P d(\frac{1}{a})$

Mean value linearization

•
$$\alpha_{t,h}^{c} = \boldsymbol{U}_{h}^{c} \cdot \boldsymbol{t}$$

•
$$\alpha_{-,h}^{c} = (\frac{1}{\rho})_{h}^{c} - \frac{1}{Z_{c}} U_{h}^{c}$$
. *n*

•
$$\alpha_{+,h}^{c} = (\frac{1}{\rho})_{h}^{c} + \frac{1}{Z_{c}} U_{h}^{c}$$
. *n*

•
$$\alpha_{e,h}^c = e_h^c - U_0^c \cdot U_h^c + P_0^c \left(\frac{1}{\rho}\right)_h^c$$

Unit direction ensuring symmetry preservation

•
$$\boldsymbol{n} = \frac{\boldsymbol{U}_0^c}{\|\boldsymbol{U}_0^c\|}$$
 and $\boldsymbol{t} = \boldsymbol{e}_z \times \frac{\boldsymbol{U}_0^c}{\|\boldsymbol{U}_0^c\|}$

Double specific volume limitation

- Standard limitation on $(\frac{1}{a})_h$ and on the Riemann invariants are performed
- Only the most limiting procedure is retained to avoid spurious oscillations

< 同 > < 三 > < 三 >
		High-order	
			Stability

Stability

- Same stability results on the piecewise constant part W_c of the numerical solution W^c_h as for the first-order schemes
- To obtain the same stability properties on the whole piecewise polynomial solution W_h, the limitation at time tⁿ has to ensure that

$$\forall \boldsymbol{x} \in \omega, \quad \mathsf{W}_h(\boldsymbol{x}) \in \boldsymbol{G}$$

Then

•
$$\|(\frac{1}{\rho})_{h}^{n}\|_{L_{1}} = \|\frac{1}{\rho^{0}}\|_{L_{1}}$$

• $\|e_{h}^{n}\|_{L_{1}} = \|e^{0}\|_{L_{1}}$
• $\|U_{h}^{n}\|_{L_{2}}^{2} < m_{\omega} + \|e_{h}^{n}\|_{L_{2}}^{2}$

(日) (日) (日)

		Numerical results	

- 1 Cell-Centered Lagrangian schemes
- 2 Lagrangian and Eulerian descriptions
- 3 Compatible first-order positivity-preserving discretization
- 4 High-order positivity-preserving extension
- 5 Numerical results
- 6 Conclusion

		Numerical results	

Cylindrical Sod shock problem

▶ ◀ ᆿ ▶

March 27th, 2014

		Numerical results	

Sedov point blast problem on a Cartesian grid

Figure: Density and pressure profiles on a 30x30 Cartesian mesh, at final time t = 1

March 27th. 2014

		Numerical results	

Sedov point blast problem on a polygonal grid

Figure: Density and pressure profiles on mesh made of 775 polygonal cells, at final time t = 1

		Numerical results	

(日) (日) (日)

		Numerical results	

Cylindrical Sedov point blast problem

Figure: Density and pressure profiles on a 30x5 polar mesh, at final time t = 1

Figure: Final grids on a Cartesian grid made of 50×50 cells, at final time t = 0.6

Figure: Density profile on a Cartesian grid made of 50×50 cells, at final time t = 0.6

		Numerical results	

Cylindrical Noh problem

伺 ト イ ヨ ト イ ヨ

Figure: Density profile on a 50x5 polar mesh, at final time t = 0.6

March 27th, 2014

Figure: Final grids on a 10x100 deformed Cartesian mesh, at time t = 0.6

< ロ > < 同 > < 回 > < 回 >

Saltzman problem

Figure: Density and pressure profiles on a 10x100 deformed Cartesian mesh, at time t = 0.6

ヘロト ヘ回ト ヘヨト ヘヨ

э

Figure: Final grids on a 10x100 deformed Cartesian mesh, at time t = 0.9

March 27th, 2014

Saltzman problem

Figure: Density and pressure profiles on a 10x100 deformed Cartesian mesh, at time t = 0.9

э

		Numerical results	

Taylor-Green vortex problem

Figure: Final grids at final time t = 0.75, on a 10x10 Cartesian mesh

		Numerical results	

Taylor-Green vortex problem

	<i>L</i> ₁		L_2		L_{∞}	
h	$E_{L_1}^h$	$q_{L_1}^h$	$E_{L_2}^h$	$q_{L_2}^h$	$E_{L_{\infty}}^{h}$	$q^h_{L_{\infty}}$
$\frac{1}{10}$	7.31É-2	0.97	8.90Ē-2	0.96	2.19E-1	0.91
$\frac{1}{20}$	3.74E-2	0.99	4.57E-2	0.98	1.17E-1	0.95
$\frac{1}{40}$	1.89E-2	0.99	2.31E-2	0.99	6.06E-2	0.97
$\frac{1}{80}$	9.50E-3	1.00	1.16E-2	1.00	3.09E-2	0.99
$\frac{1}{160}$	4.76E-3	-	5.81E-3	-	1.56E-2	-

Table: Rate of convergence computed on the velocity at time t = 0.1.

		Numerical results	

Taylor-Green vortex problem

	L ₁		L ₂		L_{∞}	
h	$E_{L_1}^h$	$q_{L_1}^h$	$E_{L_2}^h$	$q_{L_2}^h$	$E_{L_{\infty}}^{h}$	$q^h_{L_{\infty}}$
$\frac{1}{10}$	1.00E-2	2.14	1.40Ē-2	2.05	6.25E-2	1.58
$\frac{1}{20}$	2.27E-3	2.17	3.39E-3	2.14	2.10E-2	1.65
$\frac{1}{40}$	5.05E-4	2.14	7.66E-4	2.16	6.67E-3	1.92
$\frac{1}{80}$	1.14E-4	2.13	1.71E-4	2.16	1.76E-3	1.87
$\frac{1}{160}$	2.61E-5	-	3.83E-5	-	4.81E-4	-

Table: Rate of convergence computed on the velocity at time t = 0.1.

			Conclusion

- 1 Cell-Centered Lagrangian schemes
- 2 Lagrangian and Eulerian descriptions
- 3 Compatible first-order positivity-preserving discretization
- 4 High-order positivity-preserving extension
- 5 Numerical results
- 6 Conclusion

			Conclusion

Conclusions

- Demonstration of the positivity-preserving criteria of a whole class of cell-centered Lagrangian scheme, under particular time step constraints
- Extension of the demonstration to high-order of accuracy, under particular limitation of the solution
- Demonstration of L₁ stability of the specific volume and total energy
- Control of the L₁ norm of the kinetic energy and of the L₂ norm of the velocity
- Improvement of the robustness

Perspectives

- Extension of the numerical applications to higher-order of accuracy
- Extension of the CCDG to solid dynamics such as hyperelasticity

			Conclusion

- F. VILAR, P.-H. MAIRE AND R. ABGRALL, Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics. Computers and Fluids, 2010.
- F. VILAR, Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics. Computers and Fluids, 2012.
- F. VILAR, P.-H. MAIRE AND R. ABGRALL, A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids. J. of Comp. Phys., 2014. Under review