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CCLS

e Cell-Centered Lagrangian schemes
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Finite volume schemes on moving mesh

@ J. K. Dukowicz: CAVEAT scheme, 1986

@ B. Després: GLACE scheme, 2005

@ P.-H. Maire: EUCCLHYD scheme, 2007

@ J. Cheng: High-order ENO conservative Lagrangian scheme, 2007

@ G. Kluth: Cell-centered Lagrangian scheme for the hyperelasticity, 2010
@ S. Del Pino: Curvilinear finite-volume Lagrangian scheme, 2010

@ P. Hoch: Finite volume method on unstructured conical meshes, 2011

DG scheme on initial mesh
@ R. Loubeére: DG scheme for Lagrangian hydrodynamics, 2004
@ Z. Jia: DG spectral finite element for Lagrangian hydrodynamics, 2010
@ F. Vilar: High-order DG scheme for Lagrangian hydrodynamics, 2012
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Descriptions

Flow transformation Governing equations Equation of state

Flow transformation of the fluid

@ The fluid flow is described mathematically by the continuous
transformation, ®, so-called mapping such as ® : X — x = ®(X, )

)

Figure: Notation for the flow map.

ow

where X is the Lagrangian (initial) coordinate, x the Eulerian (actual)
coordinate, N the Lagrangian normal and n the Eulerian normal

Deformation Jacobian matrix: deformation gradient tensor
@ F=Vx®=2% and J=detF>0
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Descriptions

Flow transformation Governing equations Equation of state
Trajectory equation
d
° dit‘ — U(x,t), x(X,0)=X
Material time derivative
d 0
° af(x, t) = af(x, B+ U.Vf(x,1)
Transformation formulas
@ FdX =dx Change of shape of infinitesimal vectors
o o0 =pJ Mass conservation
@ JdV =dv Measure of the volume change
@ JFINdS = nds Nanson formula
Differential operators transformations
@ VyP=1Vyx.(PJFY Gradient operator
@ Vy.U=1Vyx.(UF'U) Divergence operator
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Descriptions

Flow transformation Governing equations Equation of state
Piola compatibility condition
o V. (JFH=0 = /VX.(JF“)dV:/ JF'NdS= [ nds=0
Q o0 ow
Deformation gradient tensor
dF
(*] d—t — qu =0
Actual configuration Initial configuration
d 1 od 1 »
—(=)—-Vx.U= —(=) = Vx.(JF =
°”dt(p) Vx.U=0 °pdt(p) Vx.(JFU)=0
opﬂ+vxP:0 Opoﬂ—l—vx.(PJF_t):O
dt dt
op%ervx.(PU):o opO%f+vX.(JF—1PU)=o

Specific internal energy

os:e—%Uz
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Descriptions

Flow transformation Governing equations Equation of state

Ideal EOS for the perfect gas

® P=p(y—1)e where a=,/2F

v

Stiffened EOS for water

@ P=p(y—1)e—yP* where a= /&)

p

A\

Jones-Wilkins-Lee (JWL) EOS for the detonation-products gas

@ P=p(y—1)e+f(p) where a= M
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1st order

Schemes Time step constraint

e Compatible first-order positivity-preserving discretization
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1st order
Schemes Time step constraint Positivity Stability

Mass averaged values equations

1 1
° mc(;)ng1 :mc(;)QJrAt > Up.penl,

PEQ(Owe)
o mUgt =mUg - At Y Fp
PEQ(Owe)
® meelt! = meel — At Z u,.F,
PEQ(Owe)

1 0 1 /
Qo = — dvV = — dv mean value
e = Qcp » = wcpw

° FpC =F; /pcnpc - Mpc(up — Uc) subcell forces

Momentum and total energy conservation

(*] Z ch = 0 — Z Mpc Up = Z (Pc lpcnpc+ Mchc)

ceC(p) ceC(p ceC(p)
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1st order

Schemes Time step constraint Positivity Stability

GLACE assumptions

a) Q(Owe) = P(we) the node set
b) fpchpe = oMo + lpcMpe = 3 lp-pMp-p + 3 lop+ Moo+
C) Mpc = Zpc locNpe ® Npe

d) Up = ( Z Mpe) ™" Z (Pe lochpe +MpcU¢)
ceC(p) ceC(p)

EUCCLHYD assumptions

@ Same assumptions a), b) and d) as GLACE

— 7= |-n= — + 1+ pt +
C) Mpc = ch lpcnpc & Npe + ch /pcnpc & Npe
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1st order

Schemes Time step constraint Positivity Stability

Node cell set Middle point cell set

Cell-centered DG (CCDG) assumptions
a) Qawe) = |J (Qpp)\{p"})

PEP(we)

! Ok
b) Forq e Qpp"). lomay,. = [ Aol) 30 TElxix ex)ac

keQ(pp®)
Forp € P(we), lpelpe = lpMp|,_, + loMp),,,

Forg e Q(pp™) \ {p.p™},  lochge = lgng,.
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1st order

Schemes Time step constraint Positivity Stability

CCDG assumptions

c) Forp € P(we), Moc = Zog lpeNpe ® N + Zg Iie e @ N

For g € Q(pp™) \ {p.p*},  Mpc = Zpc lpoMpe ® Mpc

d) Forpe P(we), Up=( Z Mpc) ™ Z (P lochpe + MpcUc)
ceC(p) ceC(p)
ZpL U, —|—Zp,q Ur _ Pr— P,

Forge Q(pp™)\ {p,p"}, Up= Zo, + 2o ZpL + ZpR it
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1st order

Schemes Time step constraint Positivity Stability

CFL condition

@ System eigenvalues: —a, 0, a
ve
Ve, At<C,
S e ac Lc
Volume control
Vn+1 . Vn|
@ Relative volume variation: —= T < Gy
(o}
Ve, At<C ve
) = v
| > Uplompl
pGQ(awc)
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1st order

Schemes Time step constraint Positivity Stability

Admissible set

° W:(‘;,U,e)t
o G={W, p>0,ec=e—JU*>0, &=(9,P), >0}

Ideal EOS

@lf p>0 then ¢>0 <= & =7(y—-1)e>0 < P=p(y—1)e>0
@ G={W, p>0and ¢=e—jU?>0} convexset

First-order positivity-preserving scheme

o If Wg=((1)2, U, €0)' € G, then under which constraint WZ*' € G ?

Positive density
At
olf (1)2>0 then (1)"'>0 «— (1)2> o > Up.penl,
PEQ(awc)

n+1

@ Thusif C, <1 then (%)Z=%>0 = (1) =%->0
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1st order

Schemes onstraint Positivity Stability

Positive internal energy and pressure

o EC = ec - E(Uc)
At At
@It = e (Z Up.Foo—> Ul Fp+ z—mc(z Fgc)2>
P P P

(*)] ch — PC /pcnpc - Mpc(Up - Uc)

© D bl =Y lprNppr =0

PEQ(dwe) PEP(we)
Definitions
At
® o= and V,=U, - U;

(o]

° Ac:snggAcz uj. Ig.np,

A
® Bo=> MpV,. vp - ?C(Z Mpe V)2
P P
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1st order

Schemes Time step constraint Positivity Stability

Positive pressure and internal energy

@ &M = A+ N\ B;
@ Thusif Ac>0 and B, >0 then £I*'>0

A: >0
P vt — v
gAznficQ
A R
n.n 1
o Thusif C,< 26— _ then 71>0 — A;>0
=20 v —1

Entropy

@ TdS=de+ Pd(%) >0 Gibbs identity + second law of thermodynamics

Discrete entropy inequality

© XoB=elt — Ao =l — e+ PI((1)2H - (2)2)
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1st order

Schemes Time step constraint Positivity Stability
@ Be= > MpVp.Vo— () MV
pPEQ(dwe) pPEQ(dwe)

Np
o MpC = Z an lpnnpn ® npn

n=1

Np
2
© D> MueVp Vo= 3" > Zo o (Vpemp)?= ) Z Zon Iow X,
pPEQ(dwe) PEQ(dwe) n=1 PEQ(Owe) n=1

N, N,
® Re-numbering: Y~ > p, =D ¢
i

pPEQ(dwe) n=1

N, N,
c )\ (s
e Bc=;zf/,-x,-2;I;zfzj/f/j)o)q(nf-n/)z HX . X,
| Ao o
Zih(1 ==, iti=],
where X = (Xi,...,Xy,)! and H; = I\
202211( wny), ifi#].
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1st order

Schemes Time step constraint Positivity Stability

@ If H is symmetric diagonally dominant with non-negative diagonal entries
then H is positive semi-definite (thanks to Gerschgorin theorem)

2
o If Ae < Z,/, then H,',' >0
2
OIf o< —————— then [Hil— > [Hjl=0
> Zini . nyl j#i
J
@ Thus if then B.>0

>z .2
J J

Acoustic impedance Z. = pcac
n

olf At< e \where Lo=3Y:l then B.>0
ac L /
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1st order
Schemes Time step constraint Positivity Stability

Positivity-preserving property
Finally, for the first-order finite volume cell-centered Lagrangian schemes, if

Q Wlea
Q C u h C 1
At < Cy wit v < min <1,>
| Z Un lc pc| v—1
PE Q(Owe)
2 Z pe, GLACE
PEP(we)
vy 1
Q At< with L= 2 D o EUCCLHYD
ac LC peP (we)

13 Y f,,.. ccpa

peP(wc) q€Q(pp™)

Then W' e G and &' — <0+ Po (( )t (1 ))
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1st order

Schemes Time step constraint Positivity Stability

Norm definitions

o ¥, =/Qp°\w\dv:/p|w|dv

_ 0 /2 V4 %: 2 %
o [l (/prd ) (pr dv)
Stability analysis

@ For sake of simplicity periodic boundary conditions (PBC) are considered
@ 1] is the piecewise constant numerical solution such as wmw =7

® We assume the initial solution vector W3 = ((1)2, U2, &9)t on cell w, is
computed through
1
we—— [ Reoweav.
me Jo,

where WO = (Z, U°, &%)t and s U°, €° respectively are the initial
specific volume, velocity and total energy
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1st order

Schemes Time step constraint Positivity

Specific volume

@ Positivity (;)g| = (1)2

e Conservation »_ m, (%)g => m (%)Z‘1 (since PBC + > fpchpe = 0)

c c ceC(p)

hnh chu = ch«%)z-w - H(%)Z*‘nh

Stability

Total energy
o Positivity |e| = el (since 7 >0 <= el > 1(U7)? > 0)

@ Conservation Z me el = Z mce?~! (since PBC + Z Fp. =0)
c c ceC(p)

= —1
lepll, =D melefl =>  melel~"| = llep~" Il
(o} (o]
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1st order

Schemes Time step constraint Positivity Stability

Kinetic energy and velocity

@ K= }U? specific kinetic energy
° L(UDP<el = %ch(Ug)z < ch ec
(o c
® 2meel = 2\/m \/ms(eR)2 < mc + mc (el)?
0 Y me (U2 <Y me + Y me(el)?
(o) (o] (o]

Stability

1 1
@ |(=)hll, == lle o |lenll, = l€°|I
”(p)h” 1 ”po” 1 || h” 1 ” ” 1

° |[KyllL, < llelle o ULz, < m. + llefliZ,
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Limitation

e High-order positivity-preserving extension
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High-order

Polynomial reconstruction Positivity Limitation Stability

Control point solvers

@ In the control point solvers, Fy: and Up, the interpolation values at point
p of the high-order approximations of the pressure and velocity, Pf(p)
and Uj,(p), are used instead of the mean values P, and U,

High-order extension

@ o Piecewise linear approximations of the pressure and velocity, Pn(p) and
U(p), are constructed using the mean values, P; and Uc, over the cells
(GLACE and EUCCLHYD)
©@ o A piecewise polynomial reconstruction of the solution vector
Wi(x) = ((%)h(x), Un(x), en(x))" is assumed, such as its mass averaged
value over cell w. corresponds to W, (CCDG)
o The pressure is pointwisely defined through the EOS, such as

Pa(x) = pn(x) (7 — 1) (en(x) — 3 (Un(x)?))
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High-order

Positivity Limitation

rule over triangles
@ Exact for polynomials up to degree 2(d — 1)

Stability

@ containing the cell boundary control points, i.e., Q(9%.) C Ufi’; Ric

@ With positive weights, i.e., Vg€ Rjc, wg >0

GLACE and EUCCLHYD schemes

ntri

1 1
@ vo= o [ perfav = T1nfl Y wapevi(@

C i=1 gERi ¢

o mg = Z ‘TI'C| Wq Pc
i\Ric2q

CCDG scheme

ntri

1 1
. F/Q PusaV=—>SITF] Y werP(q) vi(a)
c JQ =

qeRi,c
omg= Y [T°Iwqar(q)
iyRic2q

oY
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High-order

Polynomial reconstruction Positivity Limitation Stability

ntri
° Ro=|JRic

i=1

° mc:/ pOdV:pc/ dv = Z mg
Qe

GERc
e m. Z mq vn(q

€ geRe

Cc C
ome=me— Yy - mf

pe Q(awc)

1
ous=— 3 musa)

* QGRC\Q(BWC)

o wc——wwﬁ > mEyi(p)

PEQ(dwe)
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High-order

reconstruction Positivity Limitation Stability

Mass averaged value equations

o mi(; v =mc(%)2+m S U

peQ(&uc)
o mUJ =mUi—At > Fpe
PEQ(dwe)
o meeft' =meel — At > Up.Fp
PEQ(dwe)

1n+1_mf1c 1 c1c n n
o (N =GN e Y mp((;)h(p) up o)

¢ peQ(duwe)
m¢ 1
o UM = >y y — Z mg(U,C,(p) CFgc)
PE Q(Owe)
m¢ At
oeg“:—e +— > m(eh CUZ.FZC)
€ peo(awe) Mp
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High-order
Polynomial reconstruction Positivity Limitation Stability

Procedure

@ Express these equations as a convex combination of first-order schemes

@ X. ZHANG, Y. XIA, C.-W. SHU, Maximum-principle-satisfying and
positivity-preserving high order discontinuous Galerkin schemes for
conservation laws on triangular meshes. J. Sci. Comp., 50:29-62, 2012.

@ J. CHENG and C.-W. SHu, Positivity-preserving Lagrangian scheme for
multi-material compressible flow. J. Comp. Phys., 257:143-168, 2014.

Specific volume

o Z lpcnpc = 0 < /pcnpc = — Z /qcnqc

PEQ(dwe) qE€Q(Ows)\p
1 At
(*)] hz = (;)g(p) aF ngp . /gcngc

1 At 1 At
° H/.I‘; = (7)2(:0) + *C(UZ - VC) e Iganc = (7)2(:0) = Z VZ E Igcngc
p mp p m

P geq(awe)
v ifp=gq
o p’ )
where Vq_{ v, it p £ q.
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High-order

Polynomial reconstruction Positivity Limitation Stability

Momentum

At
o hy = Uj(p) - o Fpe
° Z 3pc:0 = 3pc— Z %qc
PEQ(duwe) qu(awc)\p
At
° HZ = Uj(p) — W(FZC — 8pc) = Z 3”
p qeQ(dwe)
F? ifp=gq
where F° = pe> . ’
Sq { S,  fPp#q.

Total energy

° ngeg(p)—ﬁ(ug cFle— Ve 8pe) = €f(p Z Ve.5h
2 s qeQ(dwe)
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High-order

Polynomial reconstruction Positivity Limitation Stability

o > mm- > mH
PEQ(Owe) PEQ(Owe)
o > mm— Y mH;
PEQ(Owe) PEQ(Owe)
o Y mm= > mpHg
PEQ(Owe) PEQ(dwe)
Mimic the first-order scheme
Qo Z %'pczo
pGQ(ch)
Q D 3= Pip)gni.—Mg(Vh— Us(p)
qeQ(dwe) qeQ(Owe)
Q@ D> VL.FE=Pip) Y VE5.lng— > VE.Mg(VE - Up(p))
gqeQ(dwe) qe Q(dwe) geQ(dwe)
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High-order

Polynomial reconstruction Positivity Limitation Stability

Artificial cell velocity and subcell forces
° %pc = PE(P)/SC"Zc + (MC - MCIC)(VC - UZ(P))

PEQ(Owe)

1 _
LMY (Mo~ Meo)US(@) — PE(@)n)
Q qeQ(dwe)

OVC:

where Ng =|9(0wc)| = Np(d—1) and Np = |P(w¢)]

Convex combination

L (mewe + Y2 meHg),
Me peQowe)

Y Wg+1 _

where HS = (H5, Hp, HS)! and  me=mS+ > mg
pPEQ(Awe)
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High-order

Polynomial reconstruction Positivity Limitation

Stability

Positivity-preserving property
Finally, for the high-order cell-centered Lagrangian schemes presented, if

Q@ W e G WeeG and Vpe Q(dwe), Wi(p) € G

o1y
Q@ At<C, 7% (G P) epp) 1

~ with C, < min (1
|(Up_ ) /c pc| (

QA< M _M v
2E:Z/ me ac L

Then W*'e G

PP (DRP) Y = 1)
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High-order

Polynomial reconstruction Positivity Limitation Stability

Quantities involved

o Wp e Qowe), Wi(p) € G

> mEWi(q)

° WS = C’ERC\Q(%) —cG o VgeR:\QOwe), Wi(q)€G
m
P
PER:\Q(Owe)
Positive limitation
1 1 1 1
@ (=)=(=)c+0,((=)f— (=
(p)h (p)c p((p)n (p)c)

o Uy = U, +0.(US— U,

@ ef =e;+0. (e — e)

where 6,€[0,1] and 6. €[0,1]
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High-order

Polynomial reconstruction

Positivity

Riemann invariants differentials
@ day=dU.t
_ 1 1

(*] dOé+ = d(%) aF

1
ﬁdU.n

® dae =de—U.dU+ Pd(})

Limitation

Mean value linearization

c __ C
oat’thh.t

°a,=(1)s- L U.n
°af, =)+ Up.n
oae,h:eh_UO' h+Pg(1;)g

Stability

Unit direction ensuring symmetry preservation

C
n= Ug
U5l

and

C
t=e, x

% 20
1UGll

Double specific volume limitation

@ Standard limitation on ( )» and on the Riemann invariants are performed
@ Only the most limiting procedure is retained to avoid spurious oscillations
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High-order

Polynomial reconstruction Positivity Limitation Stability

Stability
@ Same stability results on the piecewise constant part W, of the numerical
solution W¢ as for the first-order schemes

@ To obtain the same stability properties on the whole piecewise polynomial
solution W4, the limitation at time ¢" has to ensure that

Vx ew, Wp(x)eG

Then
o (L)l = 1121, o &gl = €]
p p
o KTl < ll€fl o |URIE < m, + €]l
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Numerical results

e Numerical results
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Figure: Final grids on a 100x5 polar mesh, at final time t = 1




Numerical results

Cylindrical Sod shock problem

1.1

‘ solution‘
1st order
2nd order ©
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0.1 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure: Density profile on a 100x5 polar mesh, at final time ¢t = 1
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Sedov point blast problem on a Cartesian grid

1 1
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(a) 1st order (b) 2nd order

Figure: Final grids on a 30x30 Cartesian mesh, at final time t = 1
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Numerical results

Sedov point blast problem on a Cartesian grid

T
solution ———

T
solution ——

1st order 4 1st order
2nd order  © 2ndorder o |
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015 |
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(a) Density profiles

(b) Pressure profiles

Figure: Density and pressure profiles on a 30x30 Cartesian mesh, at final time t = 1
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Numerical results

Sedov point blast problem on a polygonal grid
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Figure: Final grids on mesh made of 775 polygonal cells, at final time ¢ = 1
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Sedov point blast problem on a polygonal grid

oL o o | S o
2ndorder © 02| l 2ndorder o |
| | i
Al Q’ | 015 "
s !
§ /
3r ® I 1 orf
4 oy
1  ———— A A
2t 9 1
.!
(Y 0.05
it .\. l-.-o..« i B
e ;
=2
0 p———s sl g of e 6668
0 0.2 04 0.6 08 1 12 14 0 02 04 06 08 1 12 14
(a) Density profiles (b) Pressure profiles
Figure: Density and pressure profiles on mesh made of 775 polygonal cells, at final
time t =1
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Cylindrical Sedov point blast problem
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Figure: Final grids on a 30x5 polar mesh, at final time t = 1




Cylindrical Sedov point blast problem
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Figure: Density and pressure profiles on a 30x5 polar mesh, at final time t = 1
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Noh problem
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Noh problem
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Figure: Density profile on a Cartesian grid made of 50 x 50 cells, at final time t = 0.6
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Cylindrical Noh problem
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Figure: Final grids on a 50x5 polar mesh, at final time t = 0.6




Cylindrical Noh problem
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Figure: Density profile on a 50x5 polar mesh, at final time t = 0.6
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Numerical results

Saltzman problem
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Figure: Final grids on a 10x100 deformed Cartesian mesh, at time t = 0.6
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Saltzman problem
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Figure: Density and pressure profiles on a 10x100 deformed Cartesian mesh, at time
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Saltzman problem
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Figure: Final grids on a 10x100 deformed Cartesian mesh, at time { = 0.9




Saltzman problem

olf solution — | 2° " solution
st order Istorder
ndorder o ndorder o
16 1 2 ]
1P i
15 1
12 1°

10 &

4 L L L L L L L L L L L L L L L L L L
0.9 0.91 0.92 0.93 0.94 0.5 0.96 0.97 0.98 0.99 1 09 0.91 0.92 0.93 0.94 0.95 0.9 0.97 0.98 0.99 1

(a) Density profiles (b) Pressure profiles

Figure: Density and pressure profiles on a 10x100 deformed Cartesian mesh, at time
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Numerical results
Taylor-Green vortex problem




Numerical results

Taylor-Green vortex problem

L Li | Lo | Lo \
E/ ar, E] a, E_ | q
7.31E-2 | 0.97 || 8.90E-2 | 0.96 || 2.19E-1 | 0.91
3.74E-2 | 0.99 || 457E-2 | 0.98 || 1.17E-1 | 0.95
a0 1.89E-2 | 0.99 || 2.31E-2 | 0.99 || 6.06E-2 | 0.97
20 9.50E-3 | 1.00 || 1.16E-2 | 1.00 || 3.09E-2 | 0.99

180 4.76E-3 - 5.81E-3 - 1.56E-2 -

~Bl-el~ =

|

i

Table: Rate of convergence computed on the velocity at time t = 0.1.
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Numerical results

Taylor-Green vortex problem

L Li | Lo | Lo \
E/ ar, E] a, E_ | q
1.00E-2 | 2.14 || 1.40E-2 | 2.05 || 6.25E-2 | 1.58
2.27E-3 | 217 || 3.39E-3 | 2.14 || 2.10E-2 | 1.65
a0 5.05E-4 | 2.14 || 7.66E-4 | 2.16 || 6.67E-3 | 1.92
20 1.14E-4 | 213 || 1.71E-4 | 2.16 || 1.76E-3 | 1.87

180 2.61E-5 - 3.83E-5 - 4 81E-4 -

~Bl-el~ =

|

i

Table: Rate of convergence computed on the velocity at time t = 0.1.
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Conclusions

@ Demonstration of the positivity-preserving criteria of a whole class of
cell-centered Lagrangian scheme, under particular time step constraints

@ Extension of the demonstration to high-order of accuracy, under
particular limitation of the solution

@ Demonstration of Ly stability of the specific volume and total energy

@ Control of the Ly norm of the kinetic energy and of the L, norm of the
velocity

@ Improvement of the robustness

Perspectives
@ Extension of the numerical applications to higher-order of accuracy
@ Extension of the CCDG to solid dynamics such as hyperelasticity
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