Central Compact Schemes provided with Inverse Lax-Wendroff inflow boundary condition: Stability analysis

F. Vilar¹ and C.-W. Shu¹

¹Brown University, Division of Applied Mathematics 182 George Street, Providence, RI 02912

September 26th, 2013

- Introduction
- Central Compact Schemes
- Boundary conditions
- G-K-S theory
- Eigenvalue spectrum
- 6 Conclusion

- Introduction

NASA project

- Wei Wang (Florida Univ.) and Mark H. Carpenter (NASA Techn. Monitor)
- Design efficient and highly accurate solvers both for direct numerical simulations and simulations of compressible flows with turbulence models

Requirements

- Good wave resolution
- High order of accuracy
- Low dissipation error

Compact schemes

- Handle non-periodic boundary conditions a lot more easily than spectral methods could
- Much smaller numerical dispersion and dissipation errors than finite difference schemes of the same order of accuracy on the same mesh

Possible issues at the boundaries

- Several ghost points near the boundary due to the wide numerical stencil
- Grids points not located on the physical boundary
- Ghost and grid points not symmetrically located with respect to the wall

Outflow boundary condition: Lagrangian extrapolation

- Ensure stability at the outflow
- Maintain the order of accuracy

Inflow boundary condition: Inverse Lax-Wendroff

- Taylor expansion of the expected order at the boundary
- Use repeatedly the partial equation (PDE) to convert the successive normal derivatives into time derivatives of the boundary condition
- Maintain the order of accuracy

S. TAN AND C.-W. SHU, Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws. JCP, 2010.

- **Central Compact Schemes**

Conservation laws

We consider the solution of the conservation law

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0$$

A semidiscrete finite difference can be represented as

$$\left(\frac{\partial u}{\partial t}\right)_i = -f(u)_i^x,$$

where $f(u)_i^x$ is the approximation of $\frac{\partial f(u)}{\partial x}$ at the grid node x_i

Lele's compact schemes (JCP 1992)

Cell-centered compact scheme (CCCS)

$$\beta f_{i-2}^{\mathsf{X}} + \alpha f_{i-1}^{\mathsf{X}} + f_{i}^{\mathsf{X}} + \alpha f_{i+1}^{\mathsf{X}} + \beta f_{i+2}^{\mathsf{X}} = a \frac{f_{i+\frac{1}{2}} - f_{i-\frac{1}{2}}}{\Delta x} + b \frac{f_{i+\frac{3}{2}} - f_{i-\frac{3}{2}}}{3\Delta x} + c \frac{f_{i+\frac{5}{2}} - f_{i-\frac{5}{2}}}{5\Delta x}$$

Cell-node compact scheme (CNCS)

$$\beta f_{i-2}^{x} + \alpha f_{i-1}^{x} + f_{i}^{x} + \alpha f_{i+1}^{x} + \beta f_{i+2}^{x} = a \frac{f_{i+1} - f_{i-1}}{2\Delta x} + b \frac{f_{i+2} - f_{i-2}}{4\Delta x} + c \frac{f_{i+3} - f_{i-3}}{6\Delta x}$$

Lele's cell-centered compact scheme

- The resolution of the CCCS is much better than the CNCC
- Stencil contains both the grid points and half grid points
- Only the values at the cell-centers are used to calculate the derivatives at the cell-nodes

Half grid points

Interpolation from the values at the grid points by a compact formula

$$\beta \widehat{f}_{i-\frac{5}{2}} + \alpha \widehat{f}_{i-\frac{3}{2}} + \widehat{f}_{i+\frac{1}{2}} + \alpha \widehat{f}_{i+\frac{3}{2}} + \beta \widehat{f}_{i+\frac{5}{2}} = a \frac{f_{i+1} + f_i}{2} + b \frac{f_{i+2} + f_{i-1}}{2} + c \frac{f_{i+3} + f_{i-2}}{2}$$

- Introduce transfer errors
- Significantly reduces the resolution for high wave numbers

S.K. Lele, Compact finite difference schemes with spectral-like resolution. JCP, 1992.

Main idea

 If both cell-node and cell-center values are used to compute the derivatives, one could get higher order of accuracy and better resolution

New class of central compact schemes

Central Compact Schemes (CCS)

$$\beta f_{i-2}^{x} + \alpha f_{i-1}^{x} + f_{i}^{x} + \alpha f_{i+1}^{x} + \beta f_{i+2}^{x} =$$

$$=$$

$$\frac{1}{2} + b f_{i+1} - f_{i-1} + c f_{i+\frac{3}{2}} - f_{i-\frac{3}{2}} + c f_{i+2} - f_{i-2} + c f_{i+\frac{5}{2}} - f_{i-\frac{5}{2}}$$

$$a\frac{f_{i+\frac{1}{2}} - f_{i-\frac{1}{2}}}{\Delta x} + b\frac{f_{i+1} - f_{i-1}}{2\Delta x} + c\frac{f_{i+\frac{3}{2}} - f_{i-\frac{3}{2}}}{3\Delta x} + d\frac{f_{i+2} - f_{i-2}}{4\Delta x} + e\frac{f_{i+\frac{5}{2}} - f_{i-\frac{5}{2}}}{5\Delta x}$$

Both CCCS and CNCS of Lele are special cases of these CCS

X. LIU, S. ZHANG, H. ZHANG AND C.-W. SHU, *A new class of central compact schemes with spectral-like resolution I: Linear schemes.* JCP, 2013.

Half grid points

- Stored as independent computational variables
- \bullet Computed using the same scheme, shifting the indices by $\frac{1}{2}$

$$\beta f_{i-\frac{3}{2}}^{x} + \alpha f_{i-\frac{1}{2}}^{x} + f_{i+\frac{1}{2}}^{x} + \alpha f_{i+\frac{3}{2}}^{x} + \beta f_{i+\frac{5}{2}}^{x}$$

$$= a \frac{f_{i+1} - f_{i}}{\Delta x} + b \frac{f_{i+\frac{3}{2}} - f_{i-\frac{1}{2}}}{4\Delta x} + c \frac{f_{i+2} - f_{i-1}}{3\Delta x} + d \frac{f_{i+\frac{5}{2}} - f_{i-\frac{3}{2}}}{4\Delta x} + e \frac{f_{i+3} - f_{i-2}}{5\Delta x}$$

Outcome

- Gain in accuracy and resolution
- Double memory requirement in 1D
- But same cost as compact interpolation

Reformulation on a twice more refined mesh

CCS rewrite as cell-node compact schemes as

$$a\frac{\beta f_{i-4}^{\mathsf{X}} + \alpha f_{i-2}^{\mathsf{X}} + f_{i}^{\mathsf{X}} + \alpha f_{i+2}^{\mathsf{X}} + \beta f_{i+4}^{\mathsf{X}}}{\frac{1}{2\Delta x} + b\frac{f_{i+2} - f_{i-2}}{4\Delta x} + c\frac{f_{i+3} - f_{i-3}}{6\Delta x} + d\frac{f_{i+4} - f_{i-4}}{8\Delta x} + e\frac{f_{i+5} - f_{i-5}}{10\Delta x}$$

Time discretization

Third-order TVD Runge-Kutta

Two dimensional Euler equations

Figure : The distribution of the density along x = 5 for the two dimensional advection of an isentropic vortex on a 80×80 Cartesian grid, with CCS-T8.

- **Boundary conditions**

We consider the following initial boundary value problem

$$\begin{cases} \frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0, & x \in [x_A, x_B], \ t \ge 0, \\ u(x_A, t) = g(t), & t \ge 0, \\ u(x, 0) = u_0(x), & x \in [x_A, x_B] \end{cases}$$

• We assume $f'(u(x_A, t)) > 0$ and $f'(u(x_B, t)) > 0$, where $f'(u) = \frac{\mathrm{d}f(u)}{\mathrm{d}u}$

Cartesian grid

• Uniform mesh $\{x_j\}_{j=0,...,n}$ such as

$$x_0 - C_A \Delta x = x_A \le x_0 < x_1 < \cdots < x_n \le x_B = x_n + C_B \Delta x$$

where $C_A \in [0,1]$ and $C_B \in [0,1]$

• The grid points x_0 and x_n are not necessarily located on the boundaries x_A and x_B

f have to be defined for n-1

- f_{n+p} have to be defined, for p = 1, ..., 5
- s^{th} order extrapolation procedure is used

$$f_{n+p} = f(u_{n+p}),$$
 $u_{n+p} = \sum_{j=1}^{s} u_{n-s+j} \prod_{\substack{l=1 \ l \neq j}}^{s} \left(\frac{p+s-l}{j-l} \right)$

M. GOLDBERG, On a boundary extrapolation theorem by Kreiss. 1977.

Outflow: f_{n+p}^{x}

- f_{n+p}^{x} have to be defined, for p = 1, ..., 4
- Extension of the extrapolation procedure to the derivative

$$f_{n+p}^{x} = f'(u_{n+p}) \frac{\partial u}{\partial x}|_{n+p},$$

$$\frac{\partial u}{\partial x}|_{n+p} = \frac{1}{\Delta x} \sum_{j=1}^{s} u_{n-s+j} \prod_{\substack{l=1\\l \neq j}}^{s} \left(\frac{p+s-l}{j-l} \right) \sum_{\substack{q=1\\q \neq i}}^{s} \left(\frac{1}{p+s-q} \right)$$

Inflow: f_{-p}

- f_{-p} have to be defined, for $p = 1, \dots, 5$
- Inverse Lax-Wendroff (ILW) procedure is used
 - Taylor expansion at the boundary x_A

$$f_{-p} = f(u_{-p}),$$
 $u_{-p} = \sum_{k=0}^{s-1} \frac{(x_{-p} - x_A)^k}{k!} u^{*(k)},$

where $u^{*(k)}$ are the $(s-k)^{th}$ order approximation of $\frac{\partial^k u}{\partial v^k}|_{x_A}$

Repetitive use of the PDE to convert spatial derivatives to time derivatives

$$u^{*(0)} = u(x_A, t) = g(t),$$

$$u^{*(1)} = \frac{\partial u}{\partial x}|_{x_A} = -\frac{g'(t)}{f'(g(t))},$$

$$u^{*(2)} = \frac{\partial^2 u}{\partial x^2}|_{x_A} = \frac{f'(g(t))g''(t) - 2f''(g(t))g'(t)^2}{f'(g(t))^3}.$$

S. TAN AND C.-W. SHU, Inverse Lax-Wendroff procedure for numerical boundary conditions of conservation laws. JCP, 2010.

Inflow: f_{-p}^{x}

- f_{-p}^x have to be defined, for $p = 1, \dots, 4$
- Extension of the ILW procedure to the derivative

$$f_{-p}^{x} = f'(u_{-p}) \frac{\partial u}{\partial x}|_{-p},$$

$$\frac{\partial u}{\partial x}|_{-p} = \sum_{k=0}^{s-2} \frac{(x_{-p} - x_A)^k}{k!} u^{*(k+1)}$$

where the $u^{*(k)}$ have already been computed in the evaluation of u_{-p}

Outcome

- Very heavy algebra for very high order of approximation, or for fully nonlinear systems of equations
- Simplified version of the ILW procedure with only to two leading terms

S. TAN, C. WANG, C.-W. SHU AND J. NING, Efficient implementation of high order inverse Lax-Wendroff boundary treatment for conservation laws. JCP, 2012.

 The first k_s moments are computed by the ILW procedure, and the following ones through the use of an extrapolation

$$u_{-p} = \sum_{k=0}^{k_{s}-1} \frac{(-p+C_{A})^{k}}{k!} \Delta x^{k} \ u_{ILW}^{*(k)} + \sum_{k=k_{s}}^{s-1} \frac{(-p+C_{A})^{k}}{k!} \Delta x^{k} \ u_{EXT}^{*(k)},$$

where the successive moments $u_{EXT}^{* (K)}$ write

$$u_{EXT}^{*(k)} = \sum_{j=1}^{s} \frac{u_{j-1}}{\Delta x^{k}} \prod_{\substack{l=1\\l \neq j}}^{s} \left(\frac{1 - C_{A} - I}{j - I} \right) \sum_{\substack{q_{1}=1\\q_{1} \neq j}}^{s} \left(\frac{1}{1 - C_{A} - q_{1}} \right) \dots \sum_{\substack{q_{k}=1\\q_{k} \neq j\\q_{k} \neq q_{1}, \dots, q_{k-1}}}^{s} \left(\frac{1}{1 - C_{A} - q_{k}} \right)$$

Same procedure on the derivative

$$\frac{\partial u}{\partial x}|_{-\rho} = \sum_{k=0}^{k_s-2} \frac{(-p+C_A)^k}{k!} \Delta x^k \ u_{ILW}^{*(k+1)} + \sum_{k=k_s-1}^{s-2} \frac{(-p+C_A)^k}{k!} \Delta x^k \ u_{EXT}^{*(k+1)}$$

- Introduction
- Central Compact Schemes
- Boundary conditions
- G-K-S theory
- Eigenvalue spectrum
- Conclusion

entral Compact Schemes Boundary conditions G-K-S theory Eigenvalue spectrum Conclusion
Fully discrete

Theorem 1

G-K-S theory asserts that to show **stability** for the finite-domain problem, it is sufficient to show that **the inner scheme is Cauchy stable on** $(-\infty, +\infty)$, and that **each of the two quarter-plane problems is stable with the use of normal mode analysis**. Thus, the stability of the finite-domain problem is broken into the summation of three simpler problems

Theorem 2

For each quarter-plane problem that arise from Theorem 1, a **necessary and sufficient** condition for stability of the IBVP is that **no eigensolution exists**. This theorem is true for either the fully discrete case or the semidiscrete case.

References

B. Gustafsson, H.-O. Kreiss and A. Sundström, *Stability theory of difference approximations for mixed initial boundary value problem. II.* Math. of Comp., 1972.

J.C. Strikwerda, *Initial boundary value problems for the method of lines.* JCP, 1980.

Quarter-plane problem

Semidiscrete

We consider the following quarter-plane problem

$$\begin{cases} \frac{\partial u}{\partial t} + A \frac{\partial u}{\partial x} = 0, & x \ge 0, \ t \ge 0, \\ u(0,t) = g(t), & t \ge 0, \ \text{if } A > 0, \\ u(x,0) = u_0(x), & x \ge 0, \\ \|u(.,t)\| < \infty, \end{cases}$$

where
$$||u(.,t)|| = \int_0^\infty |u(x,t)|^2 dx$$

- Uniform grid $0 \le x_0 = C_0 \Delta x < x_1 < \dots$, $C_0 \in [0, 1[$
- The use of compact scheme yields the semidiscrete inner scheme

$$\mathcal{P}\frac{\mathrm{d}\,u_j}{\mathrm{d}t} = -\frac{A}{\Delta x}\mathcal{Q}u_j, \quad \text{for } j=r,r+1,\ldots$$

where
$$\mathcal{P} = \sum_{i=-r_L}^{p_L} \alpha_i \, E^i$$
, $\mathcal{Q} = \sum_{i=-r_R}^{p_R} a_i \, E^i$, $E^i u_j = u_{j+i}$ and $r = \max(r_L, r_R)$

Quarter-plane problem

Semidiscrete

Quarter-plane problem discretization

$$\begin{cases} \mathcal{P}\frac{\mathrm{d}\,u_j}{\mathrm{d}\,t} = -\frac{A}{\Delta x}\mathcal{Q}u_j, & t \geq 0, \quad j = r, r+1, \dots \\ \mathcal{D}_j\frac{\mathrm{d}\,u_j}{\mathrm{d}\,t} = -\frac{A}{\Delta x}\mathcal{B}_ju_j + \widetilde{g}_j(t), & t \geq 0, \quad j = 0, 1, \dots, r-1 \\ u_j(0) = u_0(x_j), & j = 0, 1, \dots \\ \sum_{j=0}^{\infty}|u_j(t)|^2\Delta x < \infty, & t \geq 0 \end{cases}$$

Definition

An eigensolution is the nontrivial function $v(x, s) = e^{st} \phi(x)$, which satisfies

- a) $s \Delta x \mathcal{P} v_i + A \mathcal{Q} v_i = 0$, j = r, r + 1, ...
- b) $Re(s) \geq 0$
- c) For Re(s) > 0, v(x, s) is bounded as $x \to \infty$
- d) For Re(s) = 0, $v(x, s) = \lim_{\varepsilon \to 0^+} v(x, s + \varepsilon)$, where $v(x, s + \varepsilon)$ satisfies a) and c) with respect with $s + \varepsilon$

e) $s \Delta x \mathcal{D}_i v_i + A \mathcal{B}_i v_i = \widetilde{g}_i(t), \quad i = 0, 1, ..., r-1$

Example: CCS-T6

Inner scheme

$$-\frac{u_{j-2}^{x}}{12}+u_{j}^{x}-\frac{u_{j+2}^{x}}{12}=\frac{16}{9}\frac{u_{j+1}-u_{j-1}}{2\Delta x}-\frac{17}{18}\frac{u_{j+2}-u_{j-2}}{4\Delta x}$$

• u_{-p} and u_{-p}^x , for p=1,2, are evaluated by extrapolation in the outflow case, and ILW or SILW in the inflow case

Normal mode analysis: $u_j(t) = e^{st} \phi_j$ where $\phi_j = C K^j$

ullet Characteristic equation, with $\widetilde{s}=s\,rac{\Delta x}{|A|}$

$$\widetilde{s}\left(K^{2}-\frac{1}{12}\left(K^{4}+1\right)\right)+sgn(A)\left(\frac{16}{18}\left(K^{3}-K\right)-\frac{17}{72}\left(K^{4}-1\right)\right)=0$$

- Only two roots of the resolvent equation yield $|K| \le 1$
- Thus, the general solution has the form

$$\phi_j = C_1 K_1^j + C_2 K_2^j,$$

where K_1 , K_2 the two roots with |K| < 1 and C_1 , C_2 two constants

Boundary conditions

Semidiscrete

• Substituting the general solution into the two boundary conditions for j = 0 and j = 1 yield a 2 × 2 system of equations

• For example, in the outflow case (A = -1) with extrapolation boundary

$$\begin{split} \widetilde{s} \left(72 \phi_0 - 6 \phi_2\right) + \frac{1647}{10} \phi_0 - 363 \phi_1 + 358 \phi_2 - 234 \phi_3 + \frac{177}{2} \phi_4 - \frac{71}{5} \phi_5 &= 0 \\ \widetilde{s} \left(72 \phi_1 - 6 \phi_3\right) - \frac{71}{5} \phi_0 + \frac{159}{2} \phi_1 - 150 \phi_2 + 74 \phi_3 - 21 \phi_4 + \frac{33}{10} \phi_5 &= 0 \end{split}$$

This system has only a trivial solution unless its determinant is null

Outcome

- The extrapolation outflow boundary condition maintain the stability for any CCS and any value of C₀ (no eigensolution)
- The ILW inflow boundary condition maintain the stability for any CCS and any value of C₀ (no eigensolution)
- The stability of the CCS with the SILW inflow boundary condition depends on the value of C₀ and on the number of leading terms k_s

CCS-T6 provided with SILW inflow boundary

Figure: Maximum of the real part of the eigenvalues as function of C_0 for the CCS-T6 scheme with the SILW boundary condition with one and two leading terms.

CCS-T6 provided with SILW inflow boundary

Figure: Maximum of the real part of the eigenvalues as function of C_0 for the CCS-T6 scheme with the SILW boundary condition with three leading terms.

Time discretization

- We use the third-order TVD Runge-Kutta method
- Let us consider the general system

$$\frac{\mathrm{d}\,u}{\mathrm{d}t}=F(t,u)$$

• We derive the eigenvalue problem setting F(t, u) = s u

$$u^{n+1} = (1 + \mu + \frac{\mu^2}{2} + \frac{\mu^3}{6}) u^n,$$

where
$$u^n = u(x, t^n)$$
 and $\mu = s \Delta t = \widetilde{s} \frac{|A| \Delta t}{\Delta x}$

- ullet This is nothing but a Taylor expansion of the exponential $e^{\,\mu}$
- Assuming a solution of the form $u^n = z^n u^0$, where z is a complex number, the stability domain of the considered time discretization writes

$$|z(\mu)| \le 1$$
, where $z(\mu) = 1 + \mu + \frac{\mu^2}{2} + \frac{\mu^3}{6}$

- Semidiscrete case: $u_i(t^{n+1}) = e^{s\Delta t} u_i(t^n) = e^{\tilde{s} \frac{|A|\Delta t}{\Delta x}} u_i(t^n)$
 - Re(s) < 0 and s is not a generalized eigenvalue \Longrightarrow Stability
- Fully discrete case: $u_i^{n+1} = z(s \Delta t) u_i^n = z(\tilde{s} \frac{|A| \Delta t}{\Delta x}) u_i^n$

|z| < 1 and z is not a generalized eigenvalue \Longrightarrow Stability

- We introduce the CFL condition: $CFL = \frac{|A| \Delta t}{\Delta x}$
- We substitute in the time discretization resolvent equation the eigenvalues \tilde{s} we have found in the semidiscrete G-K-S analysis

Procedure

- We start the stability analysis with the same CFL condition than for the periodic boundary case
- If the fully discrete scheme is not stable under this CFL $(\exists z, |z| \ge 1)$, we use a decreasing sequence of CFL condition, re-performing at each step to stability analysis

Outcome

- The extrapolation outflow boundary condition maintain the stability for any RK3-CCS and any value of C₀ (no eigensolution), under the same CFL than for the periodic boundary case
- The ILW inflow boundary condition maintain the stability for any RK3-CCS and any value of C₀ (no eigensolution), under the same CFL than for the periodic boundary case
- The stability of the CCS with the SILW inflow boundary condition depends on the value of C₀ and of the number of leading terms k_s.
 The fully discrete scheme would be stable under the same CFL than for the periodic boundary case or not stable for any CFL, depending on the number of leading terms

RK3-CCST6 provided with SILW inflow boundary

Figure: Maximum of the absolute value of the eigenvalues as function of C_0 for the RK3-CCST6 scheme with the SILW boundary condition with one and two leading terms.

RK3-CCST6 provided with SILW inflow boundary

Figure: Maximum of the absolute value of the eigenvalues as function of C_0 for the RK3-CCST6 scheme with the SILW boundary condition with three leading terms.

4□ > 4□ > 4∃ > 4∃ > ∃ 900

- Analytical analysis of the stability
- The stability of the finite-domain problem is broken into the summation of three simpler problems
- Analysis independent of the mesh resolution

G-K-S theory disadvantages

- Complex theory
- Very heavy algebra (not practical for very high-order of accuracy)

- Eigenvalue spectrum

We consider the following initial boundary value problem

$$\begin{cases} \frac{\partial u}{\partial t} + A \frac{\partial u}{\partial x} = 0, & x \in [x_A, x_B], \ t \ge 0, \\ u(x_A, t) = g(t), & t \ge 0, \\ u(x, 0) = u_0(x), & x \in [x_A, x_B], \end{cases}$$

We assume A > 0

Cartesian grid

• Uniform mesh $\{x_i\}_{i=0,...,n}$ such as

$$x_0 - C_A \Delta x = x_A \le x_0 < x_1 < \cdots < x_n \le x_B = x_n + C_B \Delta x$$

where $C_A \in [0, 1]$ and $C_B \in [0, 1]$

• The grid points x_0 and x_n are not necessarily located on the boundaries x_A and x_B

Discretization

- Central compact scheme is used at the inner points
- The ghost points located at the outflow boundary condition are evaluated by an extrapolation procedure
- The ghost points located at the inflow boundary condition are evaluated either by the ILW procedure or its simplified version SILW
- Finally, the semidiscrete scheme yields a linear system of equations expressed in a matrix-vector form as

$$\mathsf{P}\frac{\mathrm{d}\,\boldsymbol{U}}{\mathrm{d}t} = -\frac{A}{\Delta x}\mathsf{Q}\boldsymbol{U},$$

where P is invertible and $\boldsymbol{U} = (u_0, u_1, \dots, u_n)^{\mathsf{t}}$

Semidiscrete

• Assuming a solution of the form $u(x,t) = e^{st} u^0(x)$, the semidiscrete scheme yields

$$\widetilde{s} P \boldsymbol{U} = -sgn(A) Q \boldsymbol{U},$$

where $\widetilde{s} = s \, \frac{\Delta x}{|A|}$ being the considered eigenvalue

- Thus, we compute the eigenvalues of matrix $-sgn(A) P^{-1}Q$
- As previously, the semidiscrete scheme provided with the considered boundary conditions, on the studied mesh, is stable if the whole eigenvalue spectrum lies in the left-hand plane $(Re(\widetilde{s}) \leq 0)$

Central Compact Schemes Boundary conditions G-K-S theory Eigenvalue spectrum Conclusion

Fully discrete

CCS provided with extrapolation-ILW boundary conditions

Figure: The eigenvalue spectrum of the semi-discrete central compact schemes, closed with an Inverse Lax-Wendroff procedure for the inflow boundary, and extrapolation for the outflow boundary, with 40 cells and $C_A = 0.4$ and $C_B = 0.2$.

Semidiscrete

CCS-P provided with extrapolation-ILW boundary conditions

Figure: The eigenvalue spectrum of the semi-discrete CCS-P schemes, closed with an Inverse Lax-Wendroff procedure for the inflow boundary, and extrapolation for the outflow boundary, with 40 cells and $C_A = 0.4$ and $C_B = 0.2$.

Semidiscrete

Semidiscrete

CCS-T6 provided with extrapolation-SILW1 boundary conditions

Figure : The eigenvalue spectrum of the CCS-T6, provided with SILW procedure with one term for the inflow boundary, and extrapolation for the outflow boundary, with $C_A = 0.2$.

Semidiscrete

CCS-T6 provided with extrapolation-SILW1 boundary conditions

Figure: The eigenvalue spectrum of the CCS-T6, provided with SILW procedure with one term for the inflow boundary, and extrapolation for the outflow boundary.

CCS-T6 provided with extrapolation-SILW1 boundary conditions

Figure: Real part of the eigenvalues responsible of instability of the CCS-T6 scheme provided with extrapolation and SILW1 boundary conditions.

Semidiscrete

CCS-T6 provided with extrapolation-SILW2 boundary conditions

Figure: The eigenvalue spectrum of the CCS-T6, provided with SILW procedure with two terms for the inflow boundary, and extrapolation for the outflow boundary.

CCS-T6 provided with extrapolation-SILW2 boundary conditions

Figure: Real part of the eigenvalues responsible of instability of the CCS-T6 scheme provided with extrapolation and SILW2 boundary conditions.

CCS-T6 provided with extrapolation-SILW3 boundary conditions

Figure: The eigenvalue spectrum of the CCS-T6, provided with SILW procedure with three terms for the inflow boundary, and extrapolation for the outflow boundary.

Semidiscrete

Semidiscrete

CCS-T6 provided with extrapolation-SILW3 boundary conditions

Figure: Real part of the eigenvalues responsible of instability of the CCS-T6 scheme provided with extrapolation and SILW3 boundary conditions.

Central Compact Schemes Boundary conditions G-K-S theory Eigenvalue spectrum Conclusion

Outcome

Semidiscrete

- The CCS semidiscrete schemes provided with extrapolation outflow boundary condition and ILW inflow boundary condition are stable for any CCS and values of C_A and C_B
- The stability of the CCS provided with **extrapolation outflow** boundary condition and **SILW inflow** boundary condition **depends on** the values of C_A and C_B and on the **number of leading terms** k_S

- For some specific value of C_A, the eigenvalue spectrum of CCS provided with extrapolation and simplified inverse Lax-Wendroff boundaries may present some particular eigenvalues independent of the resolution
- These particular eigenvalues correspond to the solution of the eigenvalue problem solved in the G-K-S stability analysis
- Since the extrapolation boundary brings no instability, the two different approaches lead to the same results

Discretization

We recall the semidiscrete system obtained previously

$$\mathsf{P}\frac{\mathrm{d}\,\boldsymbol{U}}{\mathrm{d}t} = -\frac{A}{\Delta x}\mathsf{Q}\boldsymbol{U}$$

- We apply to this ODE the third-order TVD Runge-Kutta method
- Doing so, the fully discretize problem can be written as

$$\mathbf{U}^{n+1} = G \mathbf{U}^n$$
,

where \boldsymbol{U}^n and \boldsymbol{U}^{n+1} are the solution vectors at time t^n and t^{n+1}

The operator G writes

$$G = I_d - sgn(A) \frac{|A| \Delta t}{\Delta x} P^{-1}Q + \left(\frac{|A| \Delta t}{\Delta x}\right)^2 (P^{-1}Q)^2 - sgn(A) \left(\frac{|A| \Delta t}{\Delta x}\right)^3 (P^{-1}Q)^3,$$

where I_d is the identity matrix

Normal mode analysis

Semidiscrete

• Assuming a solution of form $u^n = z^n u^0$, the eigenvalue problem writes

$$z \, \boldsymbol{U}^n = \mathsf{G}\left(\frac{|A|\,\Delta t}{\Delta x}\right) \, \, \boldsymbol{U}^n$$

- We set the condition $CFL = \frac{|A| \Delta t}{\Delta x}$
- We compute the eigenvalues of matrix G(CFL)
- The fully discrete scheme provided with the considered boundary conditions, on the studied mesh, is stable if the whole eigenvalue spectrum lies in the unit circle

Procedure

- We start the stability analysis with the same CFL condition than for the periodic boundary case
- If the fully discrete scheme is not stable under this CFL ($\exists z, |z| \ge 1$), we use a decreasing sequence of CFL condition,re-computing at each step the eigenvalues

n Central Compact Schemes Boundary conditions G-K-S theory **Eigenvalue spectrum** Conclusion te

RK3-CCS provided with extrapolation-ILW boundary conditions

Figure: The eigenvalue spectrum of the RK3-CCS, closed with an Inverse Lax-Wendroff procedure for the inflow boundary, and extrapolation for the outflow boundary, with 40 cells and $C_A = 0.3$ and $C_B = 0.3$.

September 26th, 2013

RK3-CCSP provided with extrapolation-ILW boundary conditions

Figure: The eigenvalue spectrum of the RK3-CCSP, closed with an Inverse Lax-Wendroff procedure for the inflow boundary, and extrapolation for the outflow boundary, with 40 cells and $C_A = 0.3$ and $C_B = 0.3$.

RK3-CCST6 with extrapolation-SILW1 boundary conditions

Figure: The eigenvalue spectrum of the RK3-CCST6, provided with SILW procedure with one term for the inflow boundary, and extrapolation for the outflow boundary, with $C_A = 0.2$.

Central Compact Schemes Boundary conditions G-K-S theory Eigenvalue spectrum Conclusion

Fully discrete

RK3-CCST6 with extrapolation-SILW1 boundary conditions

Figure: The eigenvalue spectrum of the RK3-CCST6, provided with SILW procedure with one term for the inflow boundary, and extrapolation for the outflow boundary.

RK3-CCST6 with extrapolation-SILW1 boundary conditions

Figure: Real part of the eigenvalues responsible of instability of the RK3-CCST6 scheme provided with extrapolation and SILW1 boundary conditions.

RK3-CCST6 with extrapolation-SILW2 boundary conditions

Figure: The eigenvalue spectrum of the RK3-CCST6, provided with SILW procedure with two terms for the inflow boundary, and extrapolation for the outflow boundary.

RK3-CCST6 with extrapolation-SILW2 boundary conditions

Figure: Real part of the eigenvalues responsible of instability of the RK3-CCST6 scheme provided with extrapolation and SILW2 boundary conditions.

RK3-CCST6 with extrapolation-SILW3 boundary conditions

Figure: The eigenvalue spectrum of the RK3-CCST6, provided with SILW procedure with three terms for the inflow boundary, and extrapolation for the outflow boundary.

RK3-CCST6 with extrapolation-SILW3 boundary conditions

Figure: Real part of the eigenvalues responsible of instability of the RK3-CCST6 scheme provided with extrapolation and SILW3 boundary conditions.

Outcome

- The RK3-CCS schemes provided with extrapolation outflow boundary condition and ILW inflow boundary condition are stable for any CCS and values of C_{Δ} and C_{R}
- The stability of the RK3-CCS schemes provided with extrapolation outflow boundary condition and SILW inflow boundary condition **depends on** the values of C_A and C_B and on the **number of leading** terms ks

- For some specific value of C_A, the eigenvalue spectrum of RK3-CCS provided with extrapolation and simplified inverse Lax-Wendroff boundaries may present some particular eigenvalues independent of the resolution
- These particular eigenvalues correspond to the solution of the eigenvalue problem solved in the G-K-S stability analysis
- Since the extrapolation boundary brings no oscillations, the two different approaches lead to the same results

Number of terms required in the SILW procedure

Scheme	Leading terms
CCS-E4	3
CCS-E6	4
CCS-E8	5
CCS-E10	5

Scheme	Leading terms
CCS-T4	3
CCS-T6	3
CCS-T8	5
CCS-T10	8
CCS-T12	9

Scheme	Leading terms
CCS-P6	4
CCS-P8	5
CCS-P10	7
CCS-P12	9
CCS-P14	9

Table: Minimum numbers of leading terms required by the different RK3-CCS schemes to remain stable under the same CFL than for periodic boundary conditions.

Linear advection case with $C_A = 0.001$ and $C_B = 0.3$

Figure : Numerical results obtained with RK3-CCST6 scheme provided with extrapolation and SILW boundaries in the linear advection case (A=1) on $x \in [-1,1]$, with the initial and boundary condition $u_0(x) = 0.25 + 0.5 \sin(\pi x)$ and $u(-1,t) = 0.25 - 0.5 \sin(\pi (1+t))$, with 40 cells and CFL = 0.96.

- Introduction
- Central Compact Schemes
- Boundary conditions
- G-K-S theory
- Eigenvalue spectrum
- 6 Conclusion

Conclusions

- Both G-K-S and eigenspectrum stability analysis have been done, and gave perfectly consistent results
- CCS have been proved to remain stable under the same CFL than the periodic boundaries case and for any boundary position, provided with
 - outflow extrapolation boundary
 - inflow inverse Lax-Wendroff boundary
- The number of leading terms required by the SILW procedure for the central compact scheme to remain stable has been determined

Perspectives

- Design an energy stability
- Adapt CCS and ILW to the SBP-SAT operators
- Apply the studied schemes and boundaries to more practical applications (Euler, Navier-Stokes, ...)

M.H. CARPENTER, D. GOTTLIEB AND S. ABARBANEL, Time-stable conditions for finite-difference schemes solving hyperbolic systems: methodology and application to high-order compact schemes. JCP, 1994.