A posteriori correction of DG schemes through subcell finite volume formulation and flux recontruction

## François Vilar

Institut Montpelliérain Alexander Grothendieck Université de Montpellier

#### 17 Octobre 2019



François Vilar (IMAG)

Subcell correction through flux reconstruction

17 Octobre 2019

# Introduction

- DG as a subcell finite volume
- 3 A posteriori subcell correction

#### Numerical results



#### History

- Introduced by Reed and Hill in 1973 in the frame of the neutron transport
- Major development and improvements by B. Cockburn and C.-W. Shu in a series of seminal papers

#### Procedure

- Local variational formulation
- Piecewise polynomial approximation of the solution in the cells
- Choice of the numerical fluxes
- Time integration

## Advantages

- Natural extension of Finite Volume method
- Excellent analytical properties (L<sub>2</sub> stability, hp-adaptivity, ...)
- Extremely high accuracy (superconvergent for scalar conservation laws)
- Compact stencil (involve only face neighboring cells)

#### Scalar conservation law

• 
$$\frac{\partial u}{\partial t} + \nabla \cdot \mathbf{F}(u) = 0, \qquad (\mathbf{x}, t) \in \omega \times [0, T]$$

•  $u(\mathbf{x}, \mathbf{0}) = u_{\mathbf{0}}(\mathbf{x}), \qquad \mathbf{x} \in \omega$ 

## $(k+1)^{\text{th}}$ order semi-discretization

- $\{\omega_c\}_c$  a partition of  $\omega$ , such that  $\omega = \bigcup_c \omega_c$
- $u_h(\mathbf{x}, t)$  the numerical solution, such that  $u_{h|\omega_c} = u_h^c \in \mathbb{P}^k(\omega_c)$

$$u_h^c(\mathbf{x},t) = \sum_{m=1}^{N_k} u_m^c(t) \, \sigma_m(\mathbf{x})$$

•  $\{\sigma_m\}_{m=1,...,N_k}$  a basis of  $\mathbb{P}^k(\omega_c)$ , with  $N_k = \frac{(k+1)(k+2)}{2}$  in 2D.

## Local variational formulation on $\omega_c$

• 
$$\int_{\omega_c} \left( \frac{\partial u}{\partial t} + \nabla \cdot \mathbf{F}(u) \right) \psi \, \mathrm{d}V = 0$$
 with  $\psi(\mathbf{x})$  a test function

イロト イヨト イヨト イヨト

# Integration by parts

• 
$$\int_{\omega_c} \frac{\partial u}{\partial t} \psi \, \mathrm{d}V - \int_{\omega_c} \mathbf{F}(u) \cdot \nabla \psi \, \mathrm{d}V + \int_{\partial \omega_c} \psi \, \mathbf{F}(u) \cdot \mathbf{n} \, \mathrm{d}S = 0$$

## Approximated solution

• Substitute u by  $u_{h}^{c}$ , and restrict  $\psi$  to the polynomial space  $\mathbb{P}^{k}(\omega_{c})$ 

• 
$$\int_{\omega_c} \frac{\partial u_h^c}{\partial t} \psi \, \mathrm{d}V = \int_{\omega_c} \mathbf{F}(u_h^c) \cdot \nabla \psi \, \mathrm{d}V - \int_{\partial \omega_c} \psi \, \mathcal{F}_n \, \mathrm{d}S, \qquad \forall \, \psi \in \mathbb{P}^k(\omega_c)$$
  
• 
$$\sum_{m=1}^{N_k} \frac{\mathrm{d} \, u_m^c}{\mathrm{d}t} \, \int_{\omega_c} \sigma_m \, \sigma_p \, \mathrm{d}V = \int_{\omega_c} \mathbf{F}(u_h^c) \cdot \nabla \sigma_p \, \mathrm{d}V - \int_{\partial \omega_c} \sigma_p \, \mathcal{F}_n \, \mathrm{d}S, \qquad \forall \, p \in [[1, N_k]]$$

## Numerical flux

• 
$$\mathcal{F}_n = \mathcal{F}(u_h^c, u_h^v, \mathbf{n})$$
  
•  $\mathcal{F}(u, v, \mathbf{n}) = \frac{(\mathbf{F}(u) + \mathbf{F}(v))}{2} \cdot \mathbf{n} - \frac{\gamma(u, v, \mathbf{n})}{2} (v - u)$   
•  $\gamma(u, v, \mathbf{n}) = \max(|\mathbf{F}'(u) \cdot \mathbf{n}|, |\mathbf{F}'(v) \cdot \mathbf{n}|)$  Local Lax-Friedrichs

## Subcell resolution of DG scheme



## Subcell resolution of DG scheme



#### Gibbs phenomenon

- High-order schemes leads to spurious oscillations near discontinuities
- Leads potentially to nonlinear instability, non-admissible solution, crash
- Vast literature of how prevent this phenomenon to happen:

⇒ a priori and **a posteriori** limitations

# A priori limitation

- Artificial viscosity
- Slope/moment/hierarchical limiter
- ENO/WENO limiter

## A posteriori limitation

- MOOD ("Multi-dimensional Optimal Order Detection")
- Subcell finite volume limitation
- Subcell limitation through flux reconstruction

F. VILAR, A Posteriori Correction of High-Order DG Scheme through Subcell Finite Volume Formulation and Flux Reconstruction. JCP, 2018.

#### Admissible numerical solution

- Maximum principle / positivity preserving
- Prevent the code from crashing (for instance avoiding NaN)
- Ensure the conservation of the scheme

#### Spurious oscillations

- Discrete maximum principle
- Relaxing condition for smooth extrema

#### Accuracy

- Retain as much as possible the subcell resolution of the DG scheme
- Minimize the number of subcell solutions to recompute

Modify locally, at the subcell level, the numerical solution without impacting the solution elsewhere in the cell

## Introduction

- DG as a subcell finite volume
  - A posteriori subcell correction
  - 4 Numerical results

#### 5 Conclusion

# DG as a subcell finite volume

- Rewrite DG scheme as a specific finite volume scheme on subcells
- Exhibit the corresponding subcell numerical fluxes: reconstructed flux

Cell subdivision into N<sub>k</sub> subcells



Figure : Examples of subdivision for a  $\,\mathbb{P}^2\,\,\text{DG}$  scheme in 2D

## DG schemes through residuals

• 
$$(U_c)_m = u_m^c$$
 Solution moments  
•  $(M_c)_{mp} = \int_{\omega_c} \sigma_m \sigma_p \, \mathrm{d}V$  Mass matrix  
•  $(\Phi_c)_m = \int_{\omega_c} \mathbf{F}(u_h^c) \cdot \nabla \sigma_m \, \mathrm{d}V - \int_{\partial \omega_c} \sigma_m \, \mathcal{F}_n \, \mathrm{d}S$  DG residuals

# Subdivision and definition

•  $\omega_c$  is subdivided into  $N_k$  subcells  $S_m^c$ 

• Let us define 
$$\overline{\psi}_m^c = \frac{1}{|S_m^c|} \int_{S_m^c} \psi \, \mathrm{d}V$$
 the subcell mean value

# Submean values

$$\frac{\mathrm{d}\,\overline{U}_c}{\mathrm{d}t} = P_c\,M_c^{-1}\,\Phi_c$$

< 口 > < 🗗

Submean values

#### Subcell Finite Volume: reconstructed fluxes

Let us introduce the reconstructed fluxes such that

$$\frac{\mathrm{d}\,\overline{u}_m^c}{\mathrm{d}t} = -\frac{1}{|S_m^c|} \,\int_{\partial S_m^c} \widehat{F_n} \,\mathrm{d}S$$

We impose that on the boundary of cell ω<sub>c</sub>

$$\widehat{F_n}_{|_{\partial \omega_c}} = \mathcal{F}_n$$

• 
$$\frac{\mathrm{d}\,\overline{u}_m^c}{\mathrm{d}t} = -\frac{1}{|S_m^c|} \left( \sum_{f_{qq'} \in f_m^c} \int_{f_{qq'}} \widehat{F_n} \,\mathrm{d}S + \int_{\partial S_m^c \cap \partial \omega_c} \mathcal{F}_n \,\mathrm{d}S \right)$$

• 
$$f_m^c$$
 Set of faces in  $\partial S_m^c \setminus \partial \omega_c$ 

• 
$$\int_{f_{qq'}} \widehat{F_n} \, \mathrm{d}S = \varepsilon_{qq'} \, \widehat{F_{qq'}}$$

Sign function depending on the orientation of face  $f_{qq'}$ 

εaa'

## Subcell Finite Volume: reconstructed fluxes

• 
$$\varepsilon_{qq'} = \begin{cases} 1 & \text{if the face } f_{qq'} \text{ is direct} \\ -1 & \text{if the edge } f_{qq'} \text{ is indirect} \\ 0 & \text{if } f_{qq'} \notin f_c = \bigcup_{m=1}^{N_k} f_m^c \end{cases}$$

• Let  $\widehat{F_c}$  be the vector containing all the interior faces reconstructed fluxes

• The subcell mean values governing equations yield the following system

$$-A_c \,\widehat{F_c} = D_c \, \frac{\mathrm{d} \,\overline{U}_c}{\mathrm{d} t} + B_c$$

•  $(A_c)_{qq'} = \varepsilon_{qq'}$  Adjacency matrix •  $D_c = \text{diag}\left(|S_1^c|, \dots, |S_{N_k}^c|\right)$  Subcells volume matrix •  $(B_c)_m = \int_{\partial S_m^c \cap \partial \omega_c} \mathcal{F}_n \, \mathrm{d}S$  Cell boundary contribution

#### Subcell Finite Volume: reconstructed fluxes

• Introducing  $Q_c = D_c P_c$  such that  $(Q_c)_{mp} = \int_{S_m^c} \sigma_p \, \mathrm{d}V$ , one finally gets

$$-A_c\,\widehat{F_c}=Q_c\,M_c^{-1}\,\Phi_c+B_c$$

# Graph Laplacian technique

•  $A_c \in \mathcal{M}_{N_k \times N_F}$  with  $N_F = Card(\mathcal{S}_c)$  the number of interior faces

• 
$$A_c^t \mathbf{1} = \mathbf{0}$$
 where  $\mathbf{1} = (1, \dots, 1)^t \in \mathbb{R}^{N_k}$ 

- R. ABGRALL, Some Remarks about Conservation for Residual Distribution Schemes. Methods Appl. Math., 18:327-351, 2018.
  - Let  $\mathcal{L}_c^{-1}$  be the inverse of  $L_c = A_c A_c^t$  on the orthogonal of its kernel

$$\mathcal{L}_{c}^{-1} = (\mathcal{L}_{c} + \lambda \Pi)^{-1} - \frac{1}{\lambda} \Pi \qquad \qquad \forall \lambda \neq \mathbf{0}$$

•  $\Pi = \frac{1}{N_k} (\mathbf{1} \otimes \mathbf{1}) \in \mathcal{M}_{N_k}$ 

## Graph Laplacian technique

Finally, we obtain the following definition of the reconstructured fluxes

$$\widehat{F_c} = -A_c^{\mathrm{t}} \, \mathcal{L}_c^{-1} \left( Q_c \, M_c^{-1} \, \Phi_c + B_c \right)$$

#### remark

• The only terms depending on the time are  $\Phi_c$  and  $B_c$ 

## Back to the DG scheme

The polynomial solution is defined through reconstructed fluxes as follows

$$\frac{\mathrm{d}\,U_c}{\mathrm{d}t} = -Q_c^{-1}\left(A_c\,\widehat{F_c} + B_c\right)$$

# Question

• Is the reconstructed flux  $\widehat{F_c}$  close to the interior flux  $F(u_h^c)$  ?

## Local variational formulation

• 
$$\int_{\omega_c} \frac{\partial u_h^c}{\partial t} \psi \, \mathrm{d} V = \int_{\omega_c} \mathbf{F}(u_h^c) \cdot \nabla \psi \, \mathrm{d} V - \int_{\partial \omega_c} \psi \, \mathcal{F}_n \, \mathrm{d} \mathcal{S}, \qquad \forall \, \psi \in \mathbb{P}^k(\omega_c)$$

• Substitute  $F(u_h^c)$  with  $F_h^c \in (\mathbb{P}^{k+1}(\omega_c))^2$  (collocated or  $L_2$  projection)

• 
$$\int_{\omega_c} \frac{\partial \, u_h^c}{\partial t} \, \psi \, \mathrm{d} \, \boldsymbol{V} = - \int_{\omega_c} \psi \, \nabla \, \boldsymbol{.} \, \boldsymbol{F}_h^c \, \mathrm{d} \, \boldsymbol{V} + \int_{\partial \omega_c} \psi \, \left( \boldsymbol{F}_h^c \, \boldsymbol{.} \, \boldsymbol{n} - \mathcal{F}_n \right) \, \mathrm{d} \, \boldsymbol{S}, \quad \forall \, \psi \in \mathbb{P}^k(\omega_c)$$

## Subresolution basis functions

• Let us introduce the  $N_k$  basis functions  $\{\phi_m\}_m$  such that  $\forall \psi \in \mathbb{P}^k(\omega_c)$ 

$$\int_{\omega_c} \phi_m \, \psi \, \mathrm{d} \, \boldsymbol{V} = \int_{\boldsymbol{S}_m^c} \psi \, \mathrm{d} \, \boldsymbol{V}, \qquad \forall \, \boldsymbol{m} = 1, \dots, \boldsymbol{N}_k,$$

• 
$$\sum_{m=1}^{N_k} \phi_m(\boldsymbol{x}) = 1$$

These particular functions can be seen as the  $L_2$  projection of the indicator functions  $\mathbb{1}_m(\mathbf{x})$  onto  $\mathbb{P}^k(\omega_c)$ 

François Vilar (IMAG)

Subcell correction through flux reconstruction

## Subcell finite volume scheme

• 
$$\int_{\omega_{c}} \frac{\partial u_{h}^{c}}{\partial t} \phi_{m} dV = -\int_{\omega_{c}} \phi_{m} \nabla \cdot \boldsymbol{F}_{h}^{c} dV + \int_{\partial \omega_{c}} \phi_{m} \left(\boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n} - \boldsymbol{F}_{n}\right) dS$$
  
• 
$$|\boldsymbol{S}_{m}^{c}| \frac{d \overline{u}_{m}^{c}}{dt} = -\int_{\boldsymbol{S}_{m}^{c}} \nabla \cdot \boldsymbol{F}_{h}^{c} dV + \int_{\partial \omega_{c}} \phi_{m} \left(\boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n} - \boldsymbol{F}_{n}\right) dS$$
  
• 
$$\frac{d \overline{u}_{m}^{c}}{dt} = -\frac{1}{|\boldsymbol{S}_{m}^{c}|} \left(\int_{\partial \boldsymbol{S}_{m}^{c}} \boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n} dS - \int_{\partial \omega_{c}} \phi_{m} \left(\boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n} - \boldsymbol{F}_{n}\right) dS\right)$$
  
• 
$$\frac{d \overline{u}_{m}^{c}}{dt} = -\frac{1}{|\boldsymbol{S}_{m}^{c}|} \int_{\partial \boldsymbol{S}_{m}^{c}} \widehat{\boldsymbol{F}_{n}} dS$$
  
Subcell finite volume

## **Reconstructed Fluxes**

Finally, we get that

$$\int_{\partial S_m^c} \widehat{\boldsymbol{F}_n} \, \mathrm{d}\boldsymbol{S} = \int_{\partial S_m^c} \boldsymbol{F}_h^c \cdot \boldsymbol{n} \, \mathrm{d}\boldsymbol{S} - \int_{\partial \omega_c} \phi_m \, \left( \boldsymbol{F}_h^c \cdot \boldsymbol{n} - \mathcal{F}_n \right) \, \mathrm{d}\boldsymbol{S}$$

#### Reconstructed fluxes

• As we impose that  $\widehat{F_n}_{|_{\partial \omega_c}} = \mathcal{F}_n$ , this last expression rewrites

$$\int_{\partial S_m^c \setminus \partial \omega_c} \widehat{F}_n \, \mathrm{d}S = \int_{\partial S_m^c \setminus \partial \omega_c} F_h^c \cdot \mathbf{n} \, \mathrm{d}S - \int_{\partial \omega_c} \widetilde{\phi}_m \left( F_h^c \cdot \mathbf{n} - \mathcal{F}_n \right) \, \mathrm{d}S$$
  
•  $\widetilde{\phi}_m = \begin{cases} \phi_m & \text{if } \mathbf{x} \in \partial \omega_c \setminus \partial S_m^c \\ \phi_m - 1 & \text{if } \mathbf{x} \in \partial \omega_c \bigcap \partial S_m^c \end{cases}$   
•  $\int_{f_{qq'}} \widehat{F}_n \, \mathrm{d}S = \varepsilon_{qq'} \, \widehat{F}_{qq'} \quad \text{and} \quad \int_{f_{qq'}} F_h^c \cdot \mathbf{n} \, \mathrm{d}S = \varepsilon_{qq'} \, F_{qq'}$ 

• Then, if  $F_c$  is the vector containing all the interior faces fluxes, one gets

$$A_c \, \widehat{F_c} = A_c \, F_c - G_c$$

• 
$$(G_c)_m = \int_{\partial \omega_c} \widetilde{\phi_m} \left( \boldsymbol{F}_h^c \cdot \boldsymbol{n} - \mathcal{F}_n \right) \mathrm{d} \boldsymbol{S}$$

Boundary contribution

## Reconstructed fluxes through interior fluxes

Making use of the same graph Laplacian technique, we finally obtain

$$\widehat{F_c} = F_c - A_c^{\mathrm{t}} \, \mathcal{L}_c^{-1} \, G_c$$

• We can rewrite this expression as

$$\widehat{F_c} = F_c - E\left(F_h^c \cdot n - \mathcal{F}_n\right)$$

where E(.) is a correction function taking into account the jump between the polynomial flux and the numerical flux on the cell boundary

#### Remark

• Different choice in the correction function E(.) leads to different scheme

• For instance, E = 0 leads to the spectral volume scheme of Z.J. Wang

## Reconstructed flux in the 1D case



## Introduction

- 2 DG as a subcell finite volume
- 3 A posteriori subcell correction

#### Numerical results

#### 5 Conclusion

## RKDG scheme

- SSP Runge-Kutta: convex combinations of first-order forward Euler
- For sake of clarity, we focus on forward Euler time stepping

## Projection on subcells of RKDG solution

• 
$$u_h^{c,n}(x) = \sum_{m=1}^{N_k} u_m^{c,n} \sigma_m(x)$$

- $u_h^{c,n}$  is uiquely defined by its  $N_k$  submean values  $\overline{u}_m^{c,n}$
- Recalling the definition of the projection matrix  $(P_c)_{mp} = \frac{1}{|S_m^c|} \int_{S_m^c} \sigma_p \, \mathrm{d}V$ ,

$$\implies P_{c} \begin{pmatrix} u_{1}^{c,n} \\ \vdots \\ u_{N_{k}}^{c,n} \end{pmatrix} = \begin{pmatrix} \overline{u}_{1}^{c,n} \\ \vdots \\ \overline{u}_{N_{k}}^{c,n} \end{pmatrix}$$

#### Set up

- We assume that, for each cell, the  $\{\overline{u}_m^{c,n}\}_m$  are admissible
- Compute a candidate solution  $u_h^{n+1}$  from  $u_h^n$  through uncorrected DG
- For each subcell, check if the submean values  $\{\overline{u}_m^{c,n+1}\}_m$  are ok

# Physical admissibility detection (PAD)

- Check if  $\overline{u}_m^{c,n+1}$  lies in an convex physical admissible set (maximum principle for SCL, positivity of the pressure and density for Euler, ...)
- Check if there is any NaN values

# Numerical admissibility detection (NAD)

• Discrete maximum principle DMP on submean values:

$$\min_{\substack{p \in [\![1,N_k]\!]\\v \in \mathcal{V}(\omega_c)}} \left( \overline{u}_p^{c,n}, \overline{u}_p^{v,n} \right) \leq \overline{u}_m^{c,n+1} \leq \max_{\substack{p \in [\![1,N_k]\!]\\v \in \mathcal{V}(\omega_c)}} \left( \overline{u}_p^{c,n}, \overline{u}_p^{v,n} \right)$$

This criterion needs to be relaxed to preserve smooth extrema

Correction

## Corrected reconstructed flux



François Vilar (IMAG)

Subcell correction through flux reconstruction

Correction

## Corrected reconstructed flux



#### Figure : Correction of the reconstructed flux

François Vilar (IMAG)

Subcell correction through flux reconstruction

## Flowchart

- Compute the uncorrected DG candidate solution  $u_h^{c,n+1}$
- Project  $u_h^{c,n+1}$  to get the submean values  $\overline{u}_m^{c,n+1}$
- Solution Check  $\overline{u}_m^{c,n+1}$  through the troubled zone detection plus relaxation
- If  $\overline{u}_m^{c,n+1}$  is admissible go further in time, otherwise modify the corresponding reconstructed flux values

$$\forall f_{mq} \in \partial S_m^c,$$

$$\widehat{F_{mq}} = \mathcal{F}\left(\overline{u}_{m}^{c,n}, \overline{u}_{q}^{c,n}, \boldsymbol{n}_{mq}\right)$$

- Through the corrected reconstructed flux, recompute the submean values for tagged subcells and their first neighbors
- Return to

## Conclusion

- The limitation only affects the DG solution at the subcell scale
- The corrected scheme is conservative at the subcell level
- In practice, few submean values need to be recomputed

#### Introduction

- 2 DG as a subcell finite volume
- A posteriori subcell correction

#### Numerical results

#### 5 Conclusion

## Initial solution on $x \in [0, 1]$

- $u_0(x) = \sin(2\pi x)$
- Periodic boundary conditions



Figure : Linear advection with a 9th DG scheme and 5 cells after 1 period

#### Convergence rates

|                | L <sub>1</sub> |             | L <sub>2</sub> |             |  |
|----------------|----------------|-------------|----------------|-------------|--|
| h              | $E_{L_1}^h$    | $q_{L_1}^h$ | $E_{L_2}^h$    | $q_{L_2}^h$ |  |
| $\frac{1}{20}$ | 8.07E-11       | 9.00        | 8.97E-11       | 9.00        |  |
| $\frac{1}{40}$ | 1.58E-13       | 9.00        | 1.75E-13       | 9.00        |  |
| $\frac{1}{80}$ | 3.08E-16       | -           | 3.42E-16       | -           |  |

Table: Convergence rates for the linear advection case for a 9th order DG scheme

#### Linear advection of a square signal after 1 period



## Linear advection of a square signal after 10 periods



## Linear advection of a square signal



Figure : Comparison between 1st and 2nd order correction for the SubNAD detection criterion

#### Linear advection of a composite signal after 4 periods



#### Linear advection of a composite signal after 4 periods



Burgers equation:  $u_0(x) = \sin(2\pi x)$ 

#### Figure : 9th order corrected DG on 10 cells for $t_f = 0.7$

François Vilar (IMAG)

Subcell correction through flux reconstruction

# Burgers equation: expansion and shock waves collision

#### Figure : 9th order corrected DG on 15 cells for $t_f = 1.2$

François Vilar (IMAG)

Subcell correction through flux reconstruction

#### Burgers equation: expansion and shock waves collision







François Vilar (IMAG)

Subcell correction through flux reconstruction





# Initial solution on $\overline{x \in [0, 1]}$ for $\gamma = 3$

•  $\rho_0(x) = 1 + 0.9999999 \sin(\pi x), \quad u_0(x) = 0, \quad p_0(x) = (\rho_0(x))^{\gamma}$  $\implies \rho_0(-\frac{1}{2}) = 1.E - 7 \quad \text{and} \quad p_0(-\frac{1}{2}) = 1.E - 21$ 

Periodic boundary conditions



## Convergence rates

|                 | L <sub>1</sub> |             | L <sub>2</sub> |             | Average % of       |  |
|-----------------|----------------|-------------|----------------|-------------|--------------------|--|
| h               | $E_{L_1}^h$    | $q_{L_1}^h$ | $E_{L_2}^h$    | $q_{L_2}^h$ | corrected subcells |  |
| $\frac{1}{20}$  | 1.48E-5        | 4.35        | 2.02E-5        | 4.18        | 6.87 %             |  |
| $\frac{1}{40}$  | 9.09E-7        | 4.88        | 1.38E-6        | 4.87        | 3.31 %             |  |
| $\frac{1}{80}$  | 3.09E-8        | 4.95        | 4.73E-8        | 4.86        | 2.50 %             |  |
| $\frac{1}{160}$ | 1.00E-9        | -           | 1.63E-9        | -           | 1.12 %             |  |

Table: Convergence rates on the pressure for the Euler equation for a 5th order DG

## Sod shock tube problem



# Sod shock tube problem



#### Shock acoustic-wave interaction problem



Figure : 7th order corrected DG on 50 cells: comparison between 1st and 2nd order corrections

#### 1D Euler system

## Shock acoustic-wave interaction problem



#### Blast waves interaction problem



## 2D grid and subgrid



# Initial solution on $(x, y) \in [0, 1]^2$

- $u_0(x, y) = \sin(2\pi(x+y))$
- Periodic boundary conditions



## Convergence rates

|                | L <sub>1</sub> |             | L <sub>2</sub> |             |  |
|----------------|----------------|-------------|----------------|-------------|--|
| h              | $E_{L_1}^h$    | $q_{L_1}^h$ | $E_{L_2}^h$    | $q_{L_2}^h$ |  |
| $\frac{1}{5}$  | 2.10È-6        | 6.23        | 2.86Ē-6        | 6.24        |  |
| $\frac{1}{10}$ | 2.79E-8        | 6.00        | 3.77E-8        | 6.00        |  |
| $\frac{1}{20}$ | 3.36E-10       | -           | 5.91E-10       | -           |  |

Table: Convergence rates for the linear advection case for a 6th order DG scheme

## Rotation of a composite signal after 1 period



#### Rotation of a composite signal after 1 period



## Rotation of a composite signal after 1 period: x = 0.25



Figure : 6th order corrected DG on a 15x15 Cartesian mesh

Numerical results 2D scalar conservation laws

## Burgers equation with $u_0(x, y) = \sin(2\pi (x + y))$



## Burgers equation with $u_0(x, y) = \sin(2\pi (x + y))$

(a) Solution map

(b) Detected subcells

#### Figure : 6th order corrected DG on a 10x10 Cartesian mesh until t = 0.5

François Vilar (IMAG)

Subcell correction through flux reconstruction

17 Octobre 2019 53/57

## Burgers equation with $u_0(x, y) = \sin(2\pi (x + y))$ at t = 0.5



Figure : 6th order corrected DG solution profile on a 10x10 Cartesian mesh

## Burgers equation with composite signal



#### Kurganov, Petrova, Popov (KPP) non-convex flux problem



#### Figure : 6th order corrected DG solution on a 30x30 Cartesian mesh

## Ongoing work

- Extension to unstructured grids (with R. Abgrall): numerical results
- DoF based adaptive DG scheme through subcell finite volume formulation (with R. Loubère, S. Clain and G. Gassner)
- Maximum principle preserving DG scheme through subcell FCT reconstructed flux

## Published paper

F. VILAR, A Posteriori Correction of High-Order DG Scheme through Subcell Finite Volume Formulation and Flux Reconstruction. JCP, 387:245-279, 2018.

## Linear advection of a square signal



Figure : Comparison between subcell FV limitation and the present correction

#### Linear advection of a composite signal after 4 periods

