A posteriori correction of DG schemes through subcell finite volume formulation and flux recontruction

François Vilar

Institut Montpelliérain Alexander Grothendieck

Université de Montpellier

17 Octobre 2019

(1) Introduction
(2) DG as a subcell finite volume
(3) A posteriori subcell correction

4 Numerical results
(5) Conclusion

History

- Introduced by Reed and Hill in 1973 in the frame of the neutron transport
- Major development and improvements by B. Cockburn and C.-W. Shu in a series of seminal papers

Procedure

- Local variational formulation
- Piecewise polynomial approximation of the solution in the cells
- Choice of the numerical fluxes
- Time integration

Advantages

- Natural extension of Finite Volume method
- Excellent analytical properties (L_{2} stability, $h p$-adaptivity, \ldots)
- Extremely high accuracy (superconvergent for scalar conservation laws)
- Compact stencil (involve only face neighboring cells)

Scalar conservation law

$$
\begin{array}{ll}
-\frac{\partial u}{\partial t}+\nabla \cdot \mathbf{F}(u)=0, & (\mathbf{x}, t) \in \omega \times[0, T] \\
-u(\mathbf{x}, 0)=u_{0}(\mathbf{x}), & \mathbf{x} \in \omega
\end{array}
$$

$(k+1)^{\text {th }}$ order semi-discretization

- $\left\{\omega_{c}\right\}_{c}$ a partition of ω, such that $\omega=\bigcup_{c} \omega_{c}$
- $u_{h}(\mathbf{x}, t)$ the numerical solution, such that $u_{h \mid \omega_{c}}=u_{h}^{c} \in \mathbb{P}^{k}\left(\omega_{c}\right)$

$$
u_{h}^{c}(\mathbf{x}, t)=\sum_{m=1}^{N_{\kappa}} u_{m}^{c}(t) \sigma_{m}(\mathbf{x})
$$

- $\left\{\sigma_{m}\right\}_{m=1, \ldots, N_{k}}$ a basis of $\mathbb{P}^{k}\left(\omega_{c}\right)$, with $N_{k}=\frac{(k+1)(k+2)}{2}$ in 2D.

Local variational formulation on ω_{c}

- $\int_{\omega_{c}}\left(\frac{\partial u}{\partial t}+\nabla \cdot \mathbf{F}(u)\right) \psi \mathrm{d} V=0 \quad$ with $\psi(\mathbf{x})$ a test function

Integration by parts

- $\int_{\omega_{c}} \frac{\partial u}{\partial t} \psi \mathrm{~d} V-\int_{\omega_{c}} \mathbf{F}(u) \cdot \nabla \psi \mathrm{d} V+\int_{\partial \omega_{c}} \psi \mathbf{F}(u) \cdot \mathbf{n} \mathrm{d} S=0$

Approximated solution

- Substitute u by u_{h}^{c}, and restrict ψ to the polynomial space $\mathbb{P}^{k}\left(\omega_{c}\right)$
- $\int_{\omega_{c}} \frac{\partial u_{h}^{c}}{\partial t} \psi \mathrm{~d} V=\int_{\omega_{c}} \mathbf{F}\left(u_{h}^{c}\right) \cdot \nabla \psi \mathrm{d} V-\int_{\partial \omega_{c}} \psi \mathcal{F}_{n} \mathrm{~d} S, \quad \forall \psi \in \mathbb{P}^{k}\left(\omega_{c}\right)$
$-\sum_{m=1}^{N_{k}} \frac{\mathrm{~d} u_{m}^{c}}{\mathrm{~d} t} \int_{\omega_{c}} \sigma_{m} \sigma_{p} \mathrm{~d} V=\int_{\omega_{c}} \mathbf{F}\left(u_{h}^{c}\right) \cdot \nabla \sigma_{p} \mathrm{~d} V-\int_{\partial \omega_{c}} \sigma_{p} \mathcal{F}_{n} \mathrm{~d} S, \quad \forall p \in \llbracket 1, N_{k} \rrbracket$

Numerical flux

- $\mathcal{F}_{n}=\mathcal{F}\left(u_{h}^{c}, u_{h}^{v}, \mathbf{n}\right)$
- $\mathcal{F}(u, v, \mathbf{n})=\frac{(\mathbf{F}(u)+\mathbf{F}(v))}{2} \cdot \mathbf{n}-\frac{\gamma(u, v, \mathbf{n})}{2}(v-u)$
- $\gamma(u, v, \mathbf{n})=\max \left(\left|\mathbf{F}^{\prime}(u) \cdot \mathbf{n}\right|,\left|\mathbf{F}^{\prime}(v) \cdot \mathbf{n}\right|\right)$

Subcell resolution of DG scheme

Figure : Linear advection of composite signal after 4 periods

Subcell resolution of DG scheme

Figure : Linear advection of composite signal after 4 periods

Gibbs phenomenon

- High-order schemes leads to spurious oscillations near discontinuities
- Leads potentially to nonlinear instability, non-admissible solution, crash
- Vast literature of how prevent this phenomenon to happen:
\Longrightarrow a priori and a posteriori limitations

A priori limitation

- Artificial viscosity
- Slope/moment/hierarchical limiter
- ENO/WENO limiter

A posteriori limitation

- MOOD ("Multi-dimensional Optimal Order Detection")
- Subcell finite volume limitation
- Subcell limitation through flux reconstruction
F. VILAR, A Posteriori Correction of High-Order DG Scheme through Subcell Finite Volume Formulation and Flux Reconstruction. JCP, 2018.

Admissible numerical solution

- Maximum principle / positivity preserving
- Prevent the code from crashing (for instance avoiding NaN)
- Ensure the conservation of the scheme

Spurious oscillations

- Discrete maximum principle
- Relaxing condition for smooth extrema

Accuracy

- Retain as much as possible the subcell resolution of the DG scheme
- Minimize the number of subcell solutions to recompute

Modify locally, at the subcell level, the numerical solution without impacting the solution elsewhere in the cell

(1) Introduction

(2) DG as a subcell finite volume
(3) A posteriori subcell correction
4. Numerical results
(5) Conclusion

DG as a subcell finite volume

- Rewrite DG scheme as a specific finite volume scheme on subcells
- Exhibit the corresponding subcell numerical fluxes: reconstructed flux

Cell subdivision into N_{k} subcells

Figure : Example of a subdivision for a \mathbb{P}^{k} DG scheme in 1D

Figure : Examples of subdivision for a \mathbb{P}^{2} DG scheme in 2D

DG schemes through residuals

$-\sum_{m=1}^{N_{k}} \frac{\mathrm{~d} u_{m}^{c}}{\mathrm{~d} t} \int_{\omega_{c}} \sigma_{m} \sigma_{p} \mathrm{~d} V=\int_{\omega_{c}} \mathbf{F}\left(u_{h}^{c}\right) \cdot \nabla \sigma_{p} \mathrm{~d} V-\int_{\partial \omega_{c}} \sigma_{p} \mathcal{F}_{n} \mathrm{~d} S, \quad \forall p \in \llbracket 1, N_{k} \rrbracket$

$$
\Longrightarrow \quad M_{c} \frac{\mathrm{~d} U_{c}}{\mathrm{~d} t}=\Phi_{c}
$$

- $\left(U_{c}\right)_{m}=u_{m}^{c}$

Solution moments

- $\left(M_{c}\right)_{m p}=\int_{\omega_{c}} \sigma_{m} \sigma_{p} \mathrm{~d} V$

Mass matrix

- $\left(\Phi_{c}\right)_{m}=\int_{\omega_{c}} \mathbf{F}\left(u_{h}^{c}\right) \cdot \nabla \sigma_{m} \mathrm{~d} V-\int_{\partial \omega_{c}} \sigma_{m} \mathcal{F}_{n} \mathrm{~d} S$

DG residuals

Subdivision and definition

- ω_{c} is subdivided into N_{k} subcells S_{m}^{c}
- Let us define $\bar{\psi}_{m}^{c}=\frac{1}{\left|S_{m}^{c}\right|} \int_{S_{m}^{c}} \psi \mathrm{~d} V$ the subcell mean value

Submean values

- $\int_{S_{m}^{c}} \frac{\partial u_{h}^{c}}{\partial t} \mathrm{~d} V=\left|S_{m}^{c}\right| \frac{\mathrm{d} \bar{u}_{m}^{c}}{\mathrm{~d} t}$
- $\frac{\mathrm{d} \bar{u}_{m}^{c}}{\mathrm{~d} t}=\frac{1}{\left|S_{m}^{c}\right|} \sum_{q=1}^{N_{k}} \frac{\mathrm{~d} u_{q}^{c}}{\mathrm{~d} t} \int_{S_{m}^{c}} \sigma_{q} \mathrm{~d} V$

$$
\Longrightarrow \quad \frac{\mathrm{d} \bar{U}_{c}}{\mathrm{~d} t}=P_{c} \frac{\mathrm{~d} U_{c}}{\mathrm{~d} t}
$$

- $\left(\bar{U}_{c}\right)_{m}=\bar{u}_{m}^{c}$

Submean values

- $\left(P_{c}\right)_{m p}=\frac{1}{\left|S_{m}^{c}\right|} \int_{S_{m}^{c}} \sigma_{\rho} \mathrm{d} V$

Projection matrix

$$
\Longrightarrow \quad \frac{\mathrm{d} \bar{U}_{c}}{\mathrm{~d} t}=P_{c} M_{c}^{-1} \Phi_{c}
$$

Subcell Finite Volume: reconstructed fluxes

- Let us introduce the reconstructed fluxes such that

$$
\frac{\mathrm{d} \bar{u}_{m}^{c}}{\mathrm{~d} t}=-\frac{1}{\left|S_{m}^{c}\right|} \int_{\partial S_{m}^{c}} \widehat{F}_{n} \mathrm{~d} S
$$

- We impose that on the boundary of cell ω_{c}

$$
{\widehat{F_{n}}{ }_{\partial \omega_{c}}}=\mathcal{F}_{n}
$$

- $\frac{\mathrm{d} \bar{u}_{m}^{c}}{\mathrm{~d} t}=-\frac{1}{\left|S_{m}^{c}\right|}\left(\sum_{f_{q q^{\prime}} \in f_{m}^{c}} \int_{f_{q q^{\prime}}} \widehat{F}_{n} \mathrm{~d} S+\int_{\partial S_{m}^{c} \cap \partial \omega_{c}}^{\mathcal{F}_{n} \mathrm{~d} S}\right)$
- $f_{m}^{c} \quad$ Set of faces in $\partial S_{m}^{c} \backslash \partial \omega_{c}$
- $\int_{f_{q q^{\prime}}} \widehat{\widehat{F}_{n}} \mathrm{~d} S=\varepsilon_{q q^{\prime}} \widehat{F_{q q^{\prime}}}$
- $\varepsilon_{q q^{\prime}} \quad$ Sign function depending on the orientation of face $f_{q q^{\prime}}$

Subcell Finite Volume: reconstructed fluxes

- Let \widehat{F}_{c} be the vector containing all the interior faces reconstructed fluxes
- The subcell mean values governing equations yield the following system

$$
-A_{c} \widehat{F}_{c}=D_{c} \frac{\mathrm{~d} \bar{U}_{c}}{\mathrm{~d} t}+B_{c}
$$

- $\left(A_{c}\right)_{q q^{\prime}}=\varepsilon_{q q^{\prime}}$

Adjacency matrix

- $D_{c}=\operatorname{diag}\left(\left|S_{i}^{c}\right|, \ldots,\left|S_{N_{k}}^{c}\right|\right)$

Subcells volume matrix

- $\left(B_{c}\right)_{m}=\int_{\partial S_{m}^{S} \cap \partial \omega_{c}}^{\mathcal{F}_{n} \mathrm{~d} S}$

Cell boundary contribution

Subcell Finite Volume: reconstructed fluxes

- Introducing $Q_{c}=D_{c} P_{c}$ such that $\left(Q_{c}\right)_{m p}=\int_{S_{m}^{c}} \sigma_{p} \mathrm{~d} V$, one finally gets

$$
-A_{c} \widehat{F_{c}}=Q_{c} M_{c}^{-1} \Phi_{c}+B_{c}
$$

Graph Laplacian technique

- $A_{c} \in \mathcal{M}_{N_{k} \times N_{F}}$
- $A_{c}^{\dagger} \mathbf{1}=\mathbf{0}$
with $N_{F}=\operatorname{Card}\left(\mathcal{S}_{C}\right)$ the number of interior faces
where $1=(1, \ldots, 1)^{t} \in \mathbb{R}^{N_{k}}$

R R. Abgrall, Some Remarks about Conservation for Residual Distribution Schemes. Methods Appl. Math., 18:327-351, 2018.

- Let \mathcal{L}_{c}^{-1} be the inverse of $L_{c}=A_{c} A_{c}^{t}$ on the orthogonal of its kernel

$$
\mathcal{L}_{c}^{-1}=\left(L_{c}+\lambda \Pi\right)^{-1}-\frac{1}{\lambda} \Pi
$$

$$
\forall \lambda \neq 0
$$

- $\Pi=\frac{1}{N_{k}}(\mathbf{1} \otimes \mathbf{1}) \in \mathcal{M}_{N_{k}}$

Graph Laplacian technique

- Finally, we obtain the following definition of the reconstructured fluxes

$$
\widehat{F_{c}}=-A_{c}^{\dagger} \mathcal{L}_{c}^{-1}\left(Q_{c} M_{c}^{-1} \Phi_{c}+B_{c}\right)
$$

remark

- The only terms depending on the time are Φ_{c} and B_{c}

Back to the DG scheme

- The polynomial solution is defined through reconstructed fluxes as follows

$$
\frac{\mathrm{d} U_{c}}{\mathrm{~d} t}=-Q_{c}^{-1}\left(A_{c} \widehat{F_{c}}+B_{c}\right)
$$

Question

- Is the reconstructed flux $\widehat{F_{c}}$ close to the interior flux $\boldsymbol{F}\left(u_{h}^{c}\right)$?

Local variational formulation

- $\int_{\omega_{c}} \frac{\partial u_{h}^{c}}{\partial t} \psi \mathrm{~d} V=\int_{\omega_{c}} \mathbf{F}\left(u_{h}^{c}\right) \cdot \nabla \psi \mathrm{d} V-\int_{\partial \omega_{c}} \psi \mathcal{F}_{n} \mathrm{~d} S$, $\forall \psi \in \mathbb{P}^{\mathrm{k}}\left(\omega_{c}\right)$
- Substitute $\boldsymbol{F}\left(u_{h}^{c}\right)$ with $\boldsymbol{F}_{h}^{c} \in\left(\mathbb{P}^{k+1}\left(\omega_{c}\right)\right)^{2} \quad$ (collocated or L_{2} projection)
- $\int_{\omega_{c}} \frac{\partial u_{h}^{c}}{\partial t} \psi \mathrm{~d} V=-\int_{\omega_{c}} \psi \nabla \cdot \boldsymbol{F}_{h}^{c} \mathrm{~d} V+\int_{\partial \omega_{c}} \psi\left(\boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n}-\mathcal{F}_{n}\right) \mathrm{d} S, \quad \forall \psi \in \mathbb{P}^{\kappa}\left(\omega_{c}\right)$

Subresolution basis functions

- Let us introduce the N_{k} basis functions $\left\{\phi_{m}\right\}_{m}$ such that $\forall \psi \in \mathbb{P}^{k}\left(\omega_{c}\right)$

$$
\int_{\omega_{c}} \phi_{m} \psi \mathrm{~d} V=\int_{S_{m}^{*}} \psi \mathrm{~d} V, \quad \forall m=1, \ldots, N_{k},
$$

$\sum_{m=1}^{N_{k}} \phi_{m}(\boldsymbol{x})=1$
These particular functions can be seen as the L_{2} projection of the indicator functions $\mathbb{1}_{m}(\boldsymbol{x})$ onto $\mathbb{P}^{k}\left(\omega_{c}\right)$

Subcell finite volume scheme

- $\int_{\omega_{c}} \frac{\partial u_{h}^{c}}{\partial t} \phi_{m} \mathrm{~d} V=-\int_{\omega_{c}} \phi_{m} \nabla \cdot \boldsymbol{F}_{h}^{c} \mathrm{~d} V+\int_{\partial \omega_{c}} \phi_{m}\left(\boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n}-\mathcal{F}_{n}\right) \mathrm{d} S$
- $\left|S_{m}^{c}\right| \frac{\mathrm{d} \bar{U}_{m}^{c}}{\mathrm{~d} t}=-\int_{S_{m}^{c}} \nabla \cdot \boldsymbol{F}_{h}^{c} \mathrm{~d} V+\int_{\partial \omega_{c}} \phi_{m}\left(\boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n}-\mathcal{F}_{n}\right) \mathrm{d} S$
- $\frac{\mathrm{d} \bar{u}_{m}^{c}}{\mathrm{~d} t}=-\frac{1}{\left|S_{m}^{c}\right|}\left(\int_{\partial S_{m}^{c}} \boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n} \mathrm{~d} S-\int_{\partial \omega_{c}} \phi_{m}\left(\boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n}-\mathcal{F}_{n}\right) \mathrm{d} S\right)$
- $\frac{\mathrm{d} \bar{u}_{m}^{c}}{\mathrm{~d} t}=-\frac{1}{\left|S_{m}^{c}\right|} \int_{\partial S_{m}^{c}} \widehat{F}_{n} \mathrm{~d} S$

Subcell finite volume

Reconstructed Fluxes

- Finally, we get that

$$
\int_{\partial S_{m}^{c}} \widehat{F}_{n} \mathrm{~d} S=\int_{\partial S_{m}^{c}} \boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n} \mathrm{~d} \boldsymbol{S}-\int_{\partial \omega_{c}} \phi_{m}\left(\boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n}-\mathcal{F}_{n}\right) \mathrm{d} S
$$

Reconstructed fluxes

- As we impose that $\widehat{F}_{\left.n\right|_{\partial \omega_{c}}}=\mathcal{F}_{n}$, this last expression rewrites

$$
\begin{aligned}
& \int_{\partial S_{m}^{c} \backslash \partial \omega_{c}} \widehat{F_{n}} \mathrm{~d} S=\int_{\partial S_{m}^{c} \backslash \partial \omega_{c}} \boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n} \mathrm{~d} S-\int_{\partial \omega_{c}} \widetilde{\phi_{m}}\left(\boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n}-\mathcal{F}_{n}\right) \mathrm{d} S \\
&- \widetilde{\phi_{m}}= \\
& \text { - } \begin{array}{ll}
\phi_{m} & \text { if } \boldsymbol{x} \in \partial \omega_{c} \backslash \partial S_{m}^{c} \\
\phi_{m}-1 & \text { if } \boldsymbol{x} \in \partial \omega_{c} \cap \partial S_{m}^{c}
\end{array} \\
& \quad \int_{f_{q q^{\prime}}} \widehat{F}_{n} \mathrm{~d} S=\varepsilon_{q q^{\prime}} \widehat{F_{q q^{\prime}}} \quad \text { and } \quad \int_{f_{q q^{\prime}}} \boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n} \mathrm{~d} S=\varepsilon_{q q^{\prime}} F_{q q^{\prime}}
\end{aligned}
$$

- Then, if F_{c} is the vector containing all the interior faces fluxes, one gets

$$
A_{c} \widehat{\widehat{F}_{c}}=A_{c} F_{c}-G_{c}
$$

- $\left(G_{c}\right)_{m}=\int_{\partial \omega_{c}} \widetilde{\phi_{m}}\left(\boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n}-\mathcal{F}_{n}\right) \mathrm{d} \boldsymbol{S}$

Boundary contribution

Reconstructed fluxes through interior fluxes

- Making use of the same graph Laplacian technique, we finally obtain

$$
\widehat{F}_{c}=F_{c}-A_{c}^{t} \mathcal{L}_{c}^{-1} G_{c}
$$

- We can rewrite this expression as

$$
\widehat{F}_{c}=F_{c}-E\left(\boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n}-\mathcal{F}_{n}\right)
$$

where $E($.$) is a correction function taking into account the jump between$ the polynomial flux and the numerical flux on the cell boundary

Remark

- Different choice in the correction function $E($.$) leads to different scheme$
- For instance, $E=0$ leads to the spectral volume scheme of Z.J. Wang

Reconstructed flux in the 1D case

Figure : Polynomial interior flux and reconstructed flux

(9) Introduction

(2) DG as a subcell finite volume
(3) A posteriori subcell correction

4 Numerical results
(5) Conclusion

RKDG scheme

- SSP Runge-Kutta: convex combinations of first-order forward Euler
- For sake of clarity, we focus on forward Euler time stepping

Projection on subcells of RKDG solution

- $u_{h}^{c, n}(x)=\sum_{m=1}^{N_{k}} u_{m}^{c, n} \sigma_{m}(x)$
- $u_{h}^{c, n}$ is uiquely defined by its N_{k} submean values $\bar{u}_{m}^{c, n}$
- Recalling the definition of the projection matrix $\left(P_{c}\right)_{m p}=\frac{1}{\left|S_{m}^{c}\right|} \int_{S_{m}^{c}} \sigma_{p} \mathrm{~d} V$,

$$
\Longrightarrow \quad P_{c}\left(\begin{array}{c}
u_{1}^{c, n} \\
\vdots \\
u_{N_{k}, n}^{c, n}
\end{array}\right)=\left(\begin{array}{c}
\bar{u}_{1}^{c, n} \\
\vdots \\
u_{N_{k}, n}^{c, n}
\end{array}\right)
$$

Set up

- We assume that, for each cell, the $\left\{\bar{u}_{m}^{c, n}\right\}_{m}$ are admissible
- Compute a candidate solution u_{h}^{n+1} from u_{h}^{n} through uncorrected DG
- For each subcell, check if the submean values $\left\{\bar{u}_{m}^{c, n+1}\right\}_{m}$ are ok

Physical admissibility detection (PAD)

- Check if $\bar{u}_{m}^{c, n+1}$ lies in an convex physical admissible set (maximum principle for SCL, positivity of the pressure and density for Euler, ...)
- Check if there is any NaN values

Numerical admissibility detection (NAD)

- Discrete maximum principle DMP on submean values:

$$
\min _{\substack{p \in \llbracket 1, N_{k} \rrbracket \\ v \in \mathcal{V}\left(\omega_{c}\right)}}\left(\bar{u}_{p}^{c, n}, \bar{u}_{p}^{v, n}\right) \leq \bar{u}_{m}^{c, n+1} \leq \max _{\substack{p \in \llbracket 1, N_{k} \rrbracket \\ v \in \mathcal{V}\left(\omega_{c}\right)}}\left(\bar{u}_{p}^{c, n}, \bar{u}_{p}^{v, n}\right)
$$

- This criterion needs to be relaxed to preserve smooth extrema

Corrected reconstructed flux

Figure : Correction of the reconstructed flux

Corrected reconstructed flux

Figure: Correction of the reconstructed flux

Flowchart

(1) Compute the uncorrected DG candidate solution $u_{h}^{c, n+1}$
(2) Project $u_{h}^{c, n+1}$ to get the submean values $\bar{u}_{m}^{c, n+1}$
(3) Check $\bar{u}_{m}^{c, n+1}$ through the troubled zone detection plus relaxation
(9) If $\bar{u}_{m}^{c, n+1}$ is admissible go further in time, otherwise modify the corresponding reconstructed flux values
$\forall f_{m q} \in \partial S_{m}^{c}$,

$$
\widehat{F_{m q}}=\mathcal{F}\left(\bar{u}_{m}^{c, n}, \bar{u}_{q}^{c, n}, \boldsymbol{n}_{m q}\right)
$$

(3) Through the corrected reconstructed flux, recompute the submean values for tagged subcells and their first neighbors
(ㄷ) Return to (3)

Conclusion

- The limitation only affects the DG solution at the subcell scale
- The corrected scheme is conservative at the subcell level
- In practice, few submean values need to be recomputed

(1) Introduction

(2) DG as a subcell finite volume
(3) A posteriori subcell correction

4 Numerical results
(5) Conclusion

Initial solution on $x \in[0,1]$

- $u_{0}(x)=\sin (2 \pi x)$
- Periodic boundary conditions

Figure : Linear advection with a 9th DG scheme and 5 cells after 1 period

Convergence rates

	L_{1}		L_{2}	
h	$E_{L_{1}}^{h}$	$q_{L_{1}}^{h}$	$E_{L_{2}}^{h}$	$q_{L_{2}}^{h}$
$\frac{1}{20}$	$8.07 \mathrm{E}-11$	9.00	$8.97 \mathrm{E}-11$	9.00
$\frac{1}{40}$	$1.58 \mathrm{E}-13$	9.00	$1.75 \mathrm{E}-13$	9.00
$\frac{1}{80}$	$3.08 \mathrm{E}-16$	-	$3.42 \mathrm{E}-16$	-

Table: Convergence rates for the linear advection case for a 9th order DG scheme

Linear advection of a square signal after 1 period

Figure : 9th order corrected and uncorrected DG solutions

Linear advection of a square signal after 10 periods

(a) Without correction

(b) With correction

Figure : Comparison between different cell subdivision

Linear advection of a square signal

(a) 1st-order correction

(b) 2nd-order correction

Figure : Comparison between 1st and 2nd order correction for the SubNAD detection criterion

Linear advection of a composite signal after 4 periods

(a) 200 cells: cell mean values

(b) 50 cells: subcell mean values

Figure : 4th order DG solutions provided different limitations

Linear advection of a composite signal after 4 periods

Figure : 9th order DG solutions provided different limitations on 30 cells

Burgers equation: $u_{0}(x)=\sin (2 \pi x)$

Figure : 9th order corrected DG on 10 cells for $t_{f}=0.7$

Burgers equation: expansion and shock waves collision

Figure : 9th order corrected DG on 15 cells for $t_{f}=1.2$

Burgers equation: expansion and shock waves collision

Figure : 9th order corrected DG on 15 cells provided different limitations

Buckley non-convex flux problem at time $t=0.4$

(a) Non-entropic behavior

(b) Aliasing phenomenon

Figure : Uncorrected DG solution for the Buckley non-convex flux case

Buckley non-convex flux problem at time $t=0.4$

Figure : 9th order corrected DG solutions on 40 cells

Buckley non-convex flux problem at time $t=0.4$

(a) 200 cells: cell mean values

(b) 30 cells: subcell mean values

Figure : 4th order DG solutions provided different limitations

Buckley non-convex flux problem at time $t=0.4$

Figure : 9th order DG solutions provided different limitations on 15 cells

Initial solution on $x \in[0,1]$ for $\gamma=3$

- $\rho_{0}(x)=1+0.9999999 \sin (\pi x), \quad u_{0}(x)=0, \quad p_{0}(x)=\left(\rho_{0}(x)\right)^{\gamma}$

$$
\Longrightarrow \rho_{0}\left(-\frac{1}{2}\right)=1 . E-7 \quad \text { and } \quad p_{0}\left(-\frac{1}{2}\right)=1 . E-21
$$

- Periodic boundary conditions

Figure : 5th order corrected DG solution on 10 cells at $t=0.1$

Convergence rates

	L_{1}		L_{2}		Average $\%$ of corrected subcells
h	$E_{L_{1}}^{h}$	$q_{L_{1}}^{h}$	$E_{L_{2}}^{h}$	$q_{L_{2}}^{h}$	6.87%
$\frac{1}{20}$	$1.48 \mathrm{E}-5$	4.35	$2.02 \mathrm{E}-5$	4.18	3.31%
$\frac{1}{40}$	$9.09 \mathrm{E}-7$	4.88	$1.38 \mathrm{E}-6$	4.87	2.50%
$\frac{1}{80}$	$3.09 \mathrm{E}-8$	4.95	$4.73 \mathrm{E}-8$	4.86	2.12%
$\frac{1}{160}$	$1.00 \mathrm{E}-9$	-	$1.63 \mathrm{E}-9$	-	1.12

Table: Convergence rates on the pressure for the Euler equation for a 5th order DG

Sod shock tube problem

(a) NAD + 1st order correction

(b) SubNAD + 2nd order correction

Figure : 9th order corrected DG on 10 cells

Sod shock tube problem

Figure : 3rd order DG solutions on 100 cells: cell mean values

Shock acoustic-wave interaction problem

(a) Global view

(b) Zoom on $[0.5,2.3]$

Figure : 7th order corrected DG on 50 cells: comparison between 1st and 2nd order corrections

Shock acoustic-wave interaction problem

Figure : 3rd order corrected DG solutions on 200 cells: cell mean values

Blast waves interaction problem

Figure : Corrected DG solution on 60 cells, from 3rd to 9th order

2D grid and subgrid

(a) Grid

(b) Subgrid

Figure : 5×5 Cartesian grid and corresponding subgrid for a 6th order DG scheme

Initial solution on $(x, y) \in[0,1]^{2}$

- $u_{0}(x, y)=\sin (2 \pi(x+y))$
- Periodic boundary conditions

(a) Solution map

(b) Solution profile

Figure : Linear advection with a 6th DG scheme and 5×5 grid after 1 period

Convergence rates

	L_{1}		L_{2}	
h	$E_{L_{1}}^{h}$	$q_{L_{1}}^{h}$	$E_{L_{2}}^{h}$	$q_{L_{2}}^{h}$
$\frac{1}{5}$	$2.10 \mathrm{E}-6$	6.23	$2.86 \mathrm{E}-6$	6.24
$\frac{1}{10}$	$2.79 \mathrm{E}-8$	6.00	$3.77 \mathrm{E}-8$	6.00
$\frac{1}{20}$	$3.36 \mathrm{E}-10$	-	$5.91 \mathrm{E}-10$	-

Table: Convergence rates for the linear advection case for a 6th order DG scheme

Rotation of a composite signal after 1 period

(a) Initial solution
(b) Final solution

Figure : 6th order corrected DG on a 15×15 Cartesian mesh

Rotation of a composite signal after 1 period

(a) Solution profile for $y=0.25$

(b) Solution profile for $y=0.75$

Figure : 6th order corrected DG on a 15×15 Cartesian mesh

Rotation of a composite signal after 1 period: $x=0.25$

Figure : 6th order corrected DG on a 15×15 Cartesian mesh

Burgers equation with $u_{0}(x, y)=\sin (2 \pi(x+y))$

(a) Solution at $t=0.007$

Figure : 6th order uncorrected DG on a 10×10 Cartesian mesh

Burgers equation with $\omega_{0}(x, y)=\sin (2 \pi(x+y))$

$$
\text { Figure : 6th order corrected DG on a } 10 \times 10 \text { Cartesian mesh until } t=0.5
$$

Burgers equation with $u_{0}(x, y)=\sin (2 \pi(x+y))$ at $t=0.5$

Figure : 6th order corrected DG solution profile on a 10×10 Cartesian mesh

Burgers equation with composite signal

Figure : 6th order corrected DG on a 10x10 Cartesian mesh

Kurganov, Petrova, Popov (KPP) non-convex flux problem

Figure : 6th order corrected DG solution on a 30×30 Cartesian mesh

Ongoing work

- Extension to unstructured grids (with R. Abgrall): numerical results
- DoF based adaptive DG scheme through subcell finite volume formulation (with R. Loubère, S. Clain and G. Gassner)
- Maximum principle preserving DG scheme through subcell FCT reconstructed flux

Published paper

- F. VILAR, A Posteriori Correction of High-Order DG Scheme through Subcell Finite Volume Formulation and Flux Reconstruction. JCP, 387:245-279, 2018.

Linear advection of a square signal

(a) After 1 period

(b) After 50 periods

Figure : Comparison between subcell FV limitation and the present correction

Linear advection of a composite signal after 4 periods

(a) NAD and 1st-order correction

(b) SubNAD and 2nd-order correction

Figure : 9th order corrected DG on 30 cells

