Introduction to cell-centered Lagrangian schemes

François Vilar

Alexander Grothendieck Montpellier Institute
Montpellier University

July 2-9, 2018

(1) Introduction
(2) 1D gas dynamics system of equations
(3) First-order numerical scheme for the 1D gas dynamics
4. High-order extension in the 1D case
(5) Numerical results in 1D

6 2 D gas dynamics system of equations
(7) First-order numerical scheme for the 2D gas dynamics
(8) High-order extension in the 2D case
(9) Numerical results in 2 D

Eulerian formalism (spatial description)

- fixed referential attached to the observer
- fixed observation zone through the fluid flows

Lagrangian formalism (material description)

- moving referential attached to the material
- observation zone moved and deformed as the fluid flows

Lagrangian formalism advantages

- adapted to problems undergoing large deformations
- naturally tracks interfaces in multi-material flows
- avoids the numerical diffusion of the convection terms

Lagrangian formalism drawbacks

- Robustness issue in the case of strong vorticity or shear flows
$\Longrightarrow \quad$ ALE method (Arbitrary Lagrangian-Eulerian)

Cell-centered formulation

Staggered formulation

(1) Introduction

(2) 1D gas dynamics system of equations
(3) First-order numerical scheme for the 1D gas dynamics
(4) High-order extension in the 1D case
(5) Numerical results in 1D

6 2 D gas dynamics system of equations
(7) First-order numerical scheme for the 2D gas dynamics
(8) High-order extension in the 2D case
(9) Numerical results in 2D

Definitions

- ρ the fluid density
- u the fluid velocity
- e the fluid specific total energy
- p the fluid pressure
- $\varepsilon=e-\frac{1}{2} u^{2}$ the fluid specific internal energy

Euler system

$$
\begin{aligned}
& \text { - } \frac{\partial \rho}{\partial t}+\frac{\partial \rho u}{\partial x}=0 \\
& \text { - } \frac{\partial \rho u}{\partial t}+\frac{\partial\left(\rho u^{2}+p\right)}{\partial x}=0 \\
& \text { - } \frac{\partial \rho e}{\partial t}+\frac{\partial(\rho u e+p u)}{\partial x}=0
\end{aligned}
$$

Continuity equation
Momentum conservation

Momentum conservation
Total energy conservation

Thermodynamical closure

- $p=p(\rho, \varepsilon)$

Equation of state

Momentum conservation

- $\frac{\partial \rho u}{\partial t}+\frac{\partial\left(\rho u^{2}+p\right)}{\partial x}=0$
- $\rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}\right)+u(\underbrace{\frac{\partial \rho}{\partial t}+\frac{\partial \rho u}{\partial x}}_{=0})+\frac{\partial p}{\partial x}=0$
- $\rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}\right)+\frac{\partial p}{\partial x}=0$

Total energy conservation

- $\frac{\partial \rho e}{\partial t}+\frac{\partial(\rho u e+p u)}{\partial x}=0$
- $\rho\left(\frac{\partial e}{\partial t}+u \frac{\partial e}{\partial x}\right)+e(\underbrace{\frac{\partial \rho}{\partial t}+\frac{\partial \rho u}{\partial x}}_{=0})+\frac{\partial p u}{\partial x}=0$
- $\rho\left(\frac{\partial e}{\partial t}+u \frac{\partial e}{\partial x}\right)+\frac{\partial p u}{\partial x}=0$

Definitions

- $\tau=\frac{1}{\rho} \quad$ the specific volume
- $\mathrm{U}=(\tau, u, e)^{\mathrm{t}}$ the solution vector
- $\mathrm{F}(\mathrm{U})=(-u, p, p u)^{\mathrm{t}}$ the flux vector

Continuity equation

- $\frac{\partial \rho}{\partial t}+\frac{\partial \rho u}{\partial x}=0$
- $\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+\rho \frac{\partial u}{\partial x}=0$
- $\rho\left(\frac{\partial \tau}{\partial t}+u \frac{\partial \tau}{\partial x}\right)-\frac{\partial u}{\partial x}=0$

Non-conservative form of the gas dynamics system

- $\rho\left(\frac{\partial \mathrm{U}}{\partial t}+u \frac{\partial \mathrm{U}}{\partial x}\right)+\frac{\partial \mathrm{F}(\mathrm{U})}{\partial x}=0$

Moving referential

- X is the position of a point of the fluid in its initial configuration
- $x(X, t)$ is the actual position of this point, moved by the fluid flow

Trajectory equation

- $\frac{\partial x(X, t)}{\partial t}=u(x(X, t), t)$
- $x(X, 0)=X$

Material derivative

- $f(x, t)$ is a smooth fluid variable

$$
\frac{\mathrm{d} f}{\mathrm{~d} t} \equiv \frac{\partial f(x(X, t), t)}{\partial t}=\frac{\partial f}{\partial t}+u \frac{\partial f}{\partial x}
$$

Updated Lagrangian formulation

- $\rho \frac{\mathrm{d} \mathrm{U}}{\mathrm{d} t}+\frac{\partial \mathrm{F}(\mathrm{U})}{\partial x}=0$

Moving configuration

Definitions

- $J=\frac{\partial x}{\partial X}$ is the Jacobian associated the fluid flow
- ρ^{0} is the intial fluid density

Mass conservation

- $\int_{\omega(0)} \rho^{0} \mathrm{~d} X=\int_{\omega(t)} \rho \mathrm{d} X$
- $\int_{\omega(t)} \rho \mathrm{d} x=\int_{\omega(0)} \rho J \mathrm{~d} X$
- $\rho J=\rho^{0}$

Total Lagrangian formulation

- $\rho^{0} \frac{\mathrm{~d} \mathrm{U}}{\mathrm{d} t}+\frac{\partial \mathrm{F}(\mathrm{U})}{\partial X}=0$

Fixed configuration

Definitions

- $\mathrm{d} m=\rho \mathrm{d} x=\rho^{0} \mathrm{~d} X$ the mass variable
- $A(U)=\frac{\partial F(U)}{\partial U}$ the Jacobian matrix of the system
- $a=a(\rho, \varepsilon)$ the sound speed

Conservative formulation

- $\frac{\mathrm{d} \mathrm{U}}{\mathrm{d} t}+\frac{\partial \mathrm{F}(\mathrm{U})}{\partial m}=0$

Non-conservative formulation

- $\frac{\mathrm{d} \mathrm{U}}{\mathrm{d} t}+\mathrm{A}(\mathrm{U}) \frac{\partial \mathrm{U}}{\partial m}=0$
- $\lambda(\mathrm{U})=\{-\rho \boldsymbol{a}, 0, \rho \boldsymbol{a}\}$ the eigenvalues of $\mathrm{A}(\mathrm{U})$

Introduction

(2) 1D gas dynamics system of equations
(3) First-order numerical scheme for the 1D gas dynamics
(4) High-order extension in the 1D case
(5) Numerical results in 1D

6 2 D gas dynamics system of equations
(7) First-order numerical scheme for the 2D gas dynamics
(8) High-order extension in the 2D case
(3) Numerical results in 2D

Définitions

- $0=t^{0}<t^{1}<\cdots<t^{N}=T$ a partition of the temporal domain $[0, T]$
- $\Delta t^{n}=t^{n+1}-t^{n} \quad$ the $n^{\text {th }}$ time step
- $\omega^{0}=\bigcup_{i=1,1} \omega_{i}^{0}$ the partition of the initial domain ω^{0}
- $\omega_{i}^{0}=\left[X_{i-\frac{1}{2}}, X_{i+\frac{1}{2}}\right] \quad$ a generic cell of size ΔX_{i}
- $\omega_{i}^{n}=\left[x_{i-\frac{1}{2}}^{n}, x_{i+\frac{1}{2}}^{n}\right]$ the image of ω_{i}^{0} at time t^{n} through the fluid flow
- $m_{i}=\rho_{i}^{0} \Delta X_{i}=\rho_{i}^{n} \Delta x_{i}^{n} \quad$ the constant mass of cell ω_{i}
- $\mathrm{U}_{i}^{n}=\left(\tau_{i}^{n}, u_{i}^{n}, e_{i}^{n}\right)^{\mathrm{t}}$ the discrete solution

First-order finite volumes scheme

- $U_{i}^{n+1}=U_{i}^{n}-\frac{\Delta t^{n}}{m_{i}}\left(\bar{F}_{i+\frac{1}{2}}^{n}-\bar{F}_{i-\frac{1}{2}}^{n}\right)$
- $x_{i+\frac{1}{2}}^{n+1}=x_{i+\frac{1}{2}}^{n}+\Delta t^{n} \bar{u}_{i+\frac{1}{2}}^{n}$

Numerical flux

- $\overline{\mathrm{F}}_{i+\frac{1}{2}}^{n}=\left(-\bar{u}_{i+\frac{1}{2}}^{n}, \bar{p}_{i+\frac{1}{2}}^{n}, \bar{p}_{i+\frac{1}{2}}^{n} \bar{u}_{i+\frac{1}{2}}^{n}\right)^{\mathrm{t}}$

Two-states linearization

$$
-\frac{\mathrm{d} U}{\mathrm{~d} t}+\mathrm{A}(\mathrm{U}) \frac{\partial \mathrm{U}}{\partial m}=0 \Longrightarrow \begin{cases}\frac{\mathrm{~d} U}{\mathrm{~d} t}+\mathrm{A}\left(\widetilde{U_{\mathrm{L}}}\right) \frac{\partial \mathrm{U}}{\partial m}=0 & \text { si } m-m_{i}<0 \\ \frac{\mathrm{~d} U}{\mathrm{~d} t}+\mathrm{A}\left(\widetilde{U_{\mathrm{R}}}\right) \frac{\partial \mathrm{U}}{\partial m}=0 & \text { si } m-m_{i}>0\end{cases}
$$

Riemann problem

Simple Riemann problem

$$
\begin{aligned}
& \text { - } \mathrm{U}(m, 0)= \begin{cases}\mathrm{U}_{L} & \text { if } m-m_{i}<0 \\
\mathrm{U}_{R} & \text { if } m-m_{i}>0\end{cases} \\
& \text { - } \mathrm{U}(m, 0)= \begin{cases}\mathrm{U}_{L} & \text { if } m-m_{i}<-\widetilde{z}_{L} t \\
\overline{\mathrm{U}}^{-} & \text {if }-\widetilde{z}_{L} t<m-m_{i}<0 \\
\overline{\mathrm{U}}^{+} & \text {if } \tilde{z}_{R} t>m-m_{i}>0 \\
\mathrm{U}_{R} & \text { if } m-m_{i}>\widetilde{z}_{R} t\end{cases}
\end{aligned}
$$

Relations

- $\tilde{z}_{L}=\widetilde{\rho} a_{L}>0, \quad \tilde{z}_{R}=\widetilde{\rho} a_{R}>0$
- $\bar{u}^{-}=\bar{u}^{+}=\bar{u}, \quad \bar{p}^{-}=\bar{p}^{+}=\bar{p}$

Numerical fluxes

- $\bar{u}=\frac{\tilde{z}_{L} u_{L}+\tilde{z}_{R} u_{R}}{\widetilde{z}_{L}+\widetilde{z}_{R}}-\frac{1}{\widetilde{z}_{L}+\widetilde{z}_{R}}\left(p_{R}-p_{L}\right)$
- $\bar{p}=\frac{\widetilde{z}_{R} p_{L}+\tilde{z}_{L} p_{R}}{\widetilde{z}_{L}+\widetilde{z}_{R}}-\frac{\tilde{z}_{L} \tilde{z}_{R}}{\widetilde{z}_{L}+\widetilde{z}_{R}}\left(u_{R}-u_{L}\right)$

Intermediate states

- $\bar{\tau}^{-}=\tau_{L}+\frac{\bar{u}-u_{L}}{\widetilde{z}_{L}} \quad$ et $\quad \bar{\tau}^{+}=\tau_{R}-\frac{\bar{u}-u_{R}}{\widetilde{z}_{R}}$
- $\bar{e}^{-}=e_{L}-\frac{\bar{p} \bar{u}-p_{L} u_{L}}{\widetilde{z}_{L}} \quad$ et $\quad \bar{e}^{+}=e_{R}+\frac{\bar{p} \bar{u}-p_{R} u_{R}}{\widetilde{z}_{R}}$

Acoustic solver

- $\tilde{z}_{L} \equiv z_{L}=\rho_{L} a_{L}$
- $\tilde{z}_{R} \equiv z_{R}=\rho_{R} a_{R}$

Left acoustic impedance Right acoustic impedance

Convex combination

$$
\begin{aligned}
& \text { - } \mathrm{U}_{i}^{n+1}=\mathrm{U}_{i}^{n}-\frac{\Delta t^{n}}{m_{i}}\left(\overline{\mathrm{~F}}_{i+\frac{1}{2}}^{n}-\overline{\mathrm{F}}_{i-\frac{1}{2}}^{n}\right) \pm \frac{\Delta t^{n}}{m_{i}} \mathrm{~F}\left(\mathrm{U}_{i}^{n}\right) \pm \frac{\Delta t^{n}}{m_{i}}\left(\widetilde{z}_{i+\frac{1}{2}}^{-}+\widetilde{z}_{i-\frac{1}{2}}^{+}\right) \mathrm{U}_{i}^{n} \\
& \text { - } \mathrm{U}_{i}^{n+1}=\left(1-\lambda_{i}\right) \mathrm{U}_{i}^{n}+\lambda_{i+\frac{1}{2}}^{-} \overline{\mathrm{U}}_{i+\frac{1}{2}}^{-}+\lambda_{i-\frac{1}{2}}^{+} \overline{\mathrm{U}}_{i-\frac{1}{2}}^{+}
\end{aligned}
$$

Scheme illustration

Définitions

- $\lambda_{i \pm \frac{1}{2}}^{\mp}=\frac{\Delta t^{n}}{m_{i}} \widetilde{z}_{i \pm \frac{1}{2}}^{\mp}$
- $\lambda_{i}=\lambda_{i+\frac{1}{2}}^{-}+\lambda_{i-\frac{1}{2}}^{+}$
- $\overline{\mathrm{U}}_{i \pm \frac{1}{2}}^{\mp}=\mathrm{U}_{i}^{n} \mp \frac{\overline{\mathrm{~F}}_{i \pm \frac{1}{2}}^{n}-\mathrm{F}\left(\mathrm{U}_{i}^{n}\right)}{\widetilde{z}_{i \pm \frac{1}{2}}^{\mp}}$

CFL condition: $\lambda_{i} \leq 1$

- $\Delta t^{n} \leq \frac{m_{i}}{\widetilde{z}_{i+\frac{1}{2}}^{-}+\widetilde{z}_{i-\frac{1}{2}}^{+}}$
- $\Delta t^{n} \leq \frac{1}{2} \frac{\Delta x_{i}^{n}}{a_{i}^{n}} \quad$ if $\widetilde{z}_{i \pm \frac{1}{2}}^{\mp} \equiv z_{i}^{n}$

Semi-discret first-order scheme

$$
\text { - } m_{i} \frac{\mathrm{~d} \mathrm{U}_{i}}{\mathrm{~d} t}=-\left(\overline{\mathrm{F}}\left(\mathrm{U}_{i}, \mathrm{U}_{i+1}\right)-\overline{\mathrm{F}}\left(\mathrm{U}_{i-1}, \mathrm{U}_{i}\right)\right)
$$

Gibbs identity

- $T \mathrm{~d} S=\mathrm{d} \varepsilon+p \mathrm{~d} \tau=\mathrm{d} e-u \mathrm{~d} u+p \mathrm{~d} \tau$

Semi-discret production of entropy

- $m_{i} T_{i} \frac{\mathrm{~d} S_{i}}{\mathrm{~d} t}=m_{i} \frac{\mathrm{~d} e_{i}}{\mathrm{~d} t}+u_{i} m_{i} \frac{\mathrm{~d} u_{i}}{\mathrm{~d} t}+p_{i} m_{i} \frac{\mathrm{~d} \tau_{i}}{\mathrm{~d} t}$
- $m_{i} T_{i} \frac{\mathrm{~d} S_{i}}{\mathrm{~d} t}=\tilde{z}_{i+\frac{1}{2}}^{-}\left(\bar{u}_{i+\frac{1}{2}}-u_{i}\right)^{2}+\tilde{z}_{i-\frac{1}{2}}^{+}\left(\bar{u}_{i-\frac{1}{2}}-u_{i}\right)^{2} \geq 0$

Positivity of the discrete scheme

F. Vilar, C.-W. Shu and P.-H. Maire, Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: Form first-order to high-orders. Part I: The 1D case. JCP, 2016.

(9) Introduction

(2) 1D gas dynamics system of equations
(3) First-order numerical scheme for the 1D gas dynamics

4 High-order extension in the 1D case
(5) Numerical results in 1D

6 2 D gas dynamics system of equations
(7) First-order numerical scheme for the 2D gas dynamics
(8) High-order extension in the 2D case
(9) Numerical results in 2D

High-order extension of the finite-volume scheme

- MUSCL, (W)ENO, DG, ...

Equation on the mean values

- $\mathrm{U}_{i}^{n+1}=\mathrm{U}_{i}^{n}-\frac{\Delta t^{n}}{m_{i}}\left[\overline{\mathrm{~F}}\left(\mathrm{U}_{i+\frac{1}{2}}^{-}, \mathrm{U}_{i+\frac{1}{2}}^{+}\right)-\overline{\mathrm{F}}\left(\mathrm{U}_{i-\frac{1}{2}}^{-}, \mathrm{U}_{i-\frac{1}{2}}^{+}\right)\right]$
- $\mathrm{U}_{i-\frac{1}{2}}^{+}$and $\mathrm{U}_{i+\frac{1}{2}}^{-}$are the high-order values in ω_{i} at points $x_{i-\frac{1}{2}}$ and $x_{i+\frac{1}{2}}$

Moving or total formulation

$$
\begin{equation*}
\text { - } \quad \rho \frac{\mathrm{dU}}{\mathrm{~d} t}+\frac{\partial \mathrm{F}(\mathrm{U})}{\partial x}=0 \quad \text { ou } \quad \rho^{0} \frac{\partial \mathrm{U}}{\partial t}+\frac{\partial \mathrm{F}(\mathrm{U})}{\partial X}=0 \tag{ou}
\end{equation*}
$$

Piecewise polynomial approximation

- $\mathrm{U}_{h, i}^{n}(x)$ the polynomial approximation of the solution on ω_{i}^{n}
- $\mathrm{U}_{h, i}^{n}(X)$ the polynomial approximation of the solution on ω_{i}^{0}
- $\mathrm{U}_{i \pm \frac{1}{2}}^{\mp}=\mathrm{U}_{h, i}^{n}\left(x_{i \pm \frac{1}{2}}\right)$ (moving config.) or $\mathrm{U}_{i \pm \frac{1}{2}}^{\mp}=\mathrm{U}_{h, i}^{n}\left(X_{i \pm \frac{1}{2}}\right)$ (fixed config.)

(9) Introduction

(2) 1D gas dynamics system of equations
(3) First-order numerical scheme for the 1D gas dynamics
4. High-order extension in the 1D case
(5) Numerical results in 1D

6 2D gas dynamics system of equations
(7) First-order numerical scheme for the 2D gas dynamics
(8) High-order extension in the 2D case
(9) Numerical results in 2D

Initial solution on $X \in[0,1]$

- $\rho^{0}(X)=1+0.9999995 \sin (2 \pi X), \quad u^{0}(X)=0, \quad p^{0}(X)=\rho^{0}(X)^{\gamma}$
- Periodic boundary conditions

(a) Density profiles

(b) Velocity profiles

Figure: Solutions at time $t=0.1$ on 50 cells for a smooth problem

Convergence rates

	L_{1}		L_{2}		L_{∞}	
h	$E_{L_{1}}^{h}$	$q_{L_{1}}^{h}$	$E_{L_{2}}^{h}$	$q_{L_{2}}^{h}$	$E_{L_{\infty}}^{h}$	$q_{L_{\infty}}^{h}$
$\frac{1}{50}$	$9.69 \mathrm{E}-5$	3.02	$9.31 \mathrm{E}-5$	3.01	$2.75 \mathrm{E}-4$	3.01
$\frac{1}{100}$	$1.19 \mathrm{E}-5$	3.01	$1.16 \mathrm{E}-5$	3.00	$3.40 \mathrm{E}-5$	3.01
$\frac{1}{200}$	$1.48 \mathrm{E}-6$	3.00	$1.44 \mathrm{E}-6$	3.00	$4.923 \mathrm{E}-6$	3.00
$\frac{1}{400}$	$1.85 \mathrm{E}-7$	3.00	$1.80 \mathrm{E}-7$	3.00	$5.26 \mathrm{E}-7$	3.00
$\frac{1}{800}$	$2.30 \mathrm{E}-8$	-	$2.25 \mathrm{E}-8$	-	$6.56 \mathrm{E}-8$	-

Table: Convergence rates on the pressure for a 3rd order DG scheme

Initial solution on $X \in[0,1]$

- $\left(\rho^{0}, u^{0}, p^{0}\right)= \begin{cases}(1,0,1), & 0<x<0.5, \\ (0.125,0,0.1), & 0.5<x<1 .\end{cases}$

(a) Density profiles

(b) Internal energy profiles

Figure: Solutions at time $t=0.2$ on 100 cells for a Sod shock tube problem

Initial solution on $X \in[0,9]$

- $\left(\rho^{0}, u^{0}, e^{0}\right)= \begin{cases}(1,0,0.1), & 0<x<3, \\ \left(0.001,0,10^{-7}\right), & 3<x<9 .\end{cases}$

Figure: Solutions at time $t=6$ on 400 cells for a Leblanc shock tube problem

Convergence

Figure: Convergence at time $t=6$ for a Leblanc shock tube problem

Initial solution on $X \in[-4,4]$

- $\left(\rho^{0}, u^{0}, p^{0}\right)= \begin{cases}(1,-2,0.4), & -4<X<0, \\ (1,2,0.4), & 0<X<4 .\end{cases}$

Figure: Solutions at time $t=1$ on 400 cells for a 123 problem

Initial solution on $X \in[0,1.4]$

- $\left(\rho^{0}, u^{0}, p^{0}\right)= \begin{cases}\left(1.63 \times 10^{-3}, 0,8.381 \times 10^{3}\right), & 0<X<0.16, \\ \left(1.025 \times 10^{-3}, 0,1\right), & 0.16<X<3.0 .\end{cases}$
- On $[0,0.3]$, gaseous product of the explosion (JWL EOS)
- On [0.3, 1.4], water (stiffened gas EOS)

(a) Density profiles

(b) Pressure profiles

Figure: Solutions at time $t=0.00025$ on 400 cells for a underwater TNT explosion

Initial solution on $X \in[0,0.05]$

- $\rho^{0}(X)=2785$,

$$
u^{0}(X)=\left\{\begin{array}{l}
800, \\
0
\end{array}\right.
$$

$$
0<X<0.005,
$$

$$
0.005<X<0.05 .
$$

- Aluminium (Mie-Grüneisen EOS)

(a) Density profiles

(b) Pressure profiles

Figure: Solutions at time $t=5 \times 10^{-6}$ on 100 cells for a flying plate impact

(1) Introduction

(2) 1D gas dynamics system of equations
(3) First-order numerical scheme for the 1D gas dynamics
(4) High-order extension in the 1D case
(5) Numerical results in 1D

6 2 D gas dynamics system of equations
(7) First-order numerical scheme for the 2D gas dynamics
(8) High-order extension in the 2D case
(9) Numerical results in 2D

Euler equations

$$
\begin{aligned}
& \text { - } \frac{\partial \rho}{\partial t}+\nabla_{x} \cdot \rho \boldsymbol{u}=0 \\
& \text { - } \frac{\partial \rho \boldsymbol{u}}{\partial t}+\nabla_{x} \cdot\left(\rho \boldsymbol{u} \otimes \boldsymbol{u}+p{l_{d}}\right)=\mathbf{0} \\
& \text { - } \frac{\partial \rho e}{\partial t}+\nabla_{x} \cdot(\rho \boldsymbol{u} \boldsymbol{e}+p \boldsymbol{u})=0
\end{aligned}
$$

Trajectory equation

$$
\frac{\mathrm{d} \boldsymbol{x}(\boldsymbol{X}, t)}{\mathrm{d} t}=\boldsymbol{u}(\boldsymbol{x}(\boldsymbol{X}, t), t), \quad \boldsymbol{x}(\boldsymbol{X}, 0)=\boldsymbol{X}
$$

Material derivative

$$
\frac{\mathrm{d} f(\boldsymbol{x}, t)}{\mathrm{d} t}=\frac{\partial f(\boldsymbol{x}, t)}{\partial t}+\boldsymbol{u} \cdot \nabla_{x} f(\boldsymbol{x}, t)
$$

Definitions

- $U=(\tau, \boldsymbol{u}, \boldsymbol{e})^{\mathrm{t}}$
- $\mathbf{F}(\mathrm{U})=(-\boldsymbol{u}, \mathbb{1}(1) p, \mathbb{1}(2) p, p \boldsymbol{u})^{\mathrm{t}} \quad$ where $\quad \mathbb{1}(i)=\left(\delta_{i 1}, \delta_{i 2}\right)^{\mathrm{t}}$

Updated Lagrangian formulation

- $\rho \frac{\mathrm{d} \mathrm{U}}{\mathrm{d} t}+\nabla_{X} \cdot \mathrm{~F}(\mathrm{U})=0$

Moving configuration
Deformation gradient tensor

- $\mathbf{J}=\nabla_{X} \boldsymbol{X} \quad$ with $\quad|\boldsymbol{J}|=\operatorname{det} \boldsymbol{J}>0$
- $\nabla_{X} \cdot\left(|\mathrm{~J}| \mathrm{J}^{-\mathrm{t}}\right)=\mathbf{0}$

Piola compatibility condition

Mass conservation

$$
\text { - } \rho|\mathrm{J}|=\rho^{0}
$$

Total Lagrangian formulation

- $\rho^{0} \frac{\mathrm{~d} \mathrm{U}}{\mathrm{d} t}+\nabla_{X} \cdot\left(|\mathrm{~J}| \mathrm{J}^{-1} \mathrm{~F}(\mathrm{U})\right)=0$

Fixed configuration

(9) Introduction

(2) 1D gas dynamics system of equations
(3) First-order numerical scheme for the 1D gas dynamics
4. High-order extension in the 1D case
(5) Numerical results in 1D

6 2 D gas dynamics system of equations
(7) First-order numerical scheme for the 2D gas dynamics
(8) High-order extension in the 2D case
(3) Numerical results in 2D

Définitions

- $0=t^{0}<t^{1}<\cdots<t^{N}=T$ a partition of the time domain $[0, T]$
- $\omega^{0}=\bigcup_{c=1, l} \omega_{c}^{0} \quad$ a partition of the initial domain ω^{0}
- ω_{c}^{n} the image of ω_{c}^{0} at time t^{n} through the fluid flow
- m_{c} the constant mass of cell ω_{c}
- $\mathrm{U}_{c}^{n}=\left(\tau_{c}^{n}, u_{c}^{n}, \boldsymbol{e}_{c}^{n}\right)^{\mathrm{t}}$ the discrete solution

(a) Straight line edges

(b) Conical edges

(c) Polynomial edges

Figure: Generic polygonal cell

Integration

- $\mathrm{U}_{c}^{n+1}=\mathrm{U}_{c}^{n}-\frac{\Delta t^{n}}{m_{c}} \int_{\partial \omega_{c}} \bar{F} . \boldsymbol{n} \mathrm{d} s$
- Integration of the cell boundary term (analytically, quadrature, ...)

General first-order finite volumes scheme

- $\mathrm{U}_{c}^{n+1}=\mathrm{U}_{c}^{n}-\frac{\Delta t^{n}}{m_{c}} \sum_{q \in \mathcal{Q}_{c}} \overline{\mathrm{~F}}_{q c} \cdot I_{q c} \boldsymbol{n}_{q c}$
- $\bar{F}_{q c}=\left(-\bar{u}_{q}, \mathbb{1}(1) \bar{p}_{q c}, \mathbb{1}(2) \bar{p}_{q c}, \bar{p}_{q c} \overline{\boldsymbol{u}}_{q}\right)^{t} \quad$ numarical flux at point q
- $\boldsymbol{x}_{q}^{n+1}=\boldsymbol{x}_{q}^{n}+\Delta t^{n} \overline{\boldsymbol{u}}_{q}$

Definitions

- \mathcal{Q}_{c} the chosen control point set of cell ω_{c}
- $I_{q c} \boldsymbol{n}_{q c}$ some normals to be defined

Remark

- $\bar{F}_{q c}$ is local to the cell ω_{c}
- Only $\bar{u}_{q c}=\overline{\boldsymbol{u}}_{q}$ needs to be continuous, to advect the mesh
- Loss of the scheme conservation?

(a) Face control point

(b) Grid node Figure: Points neighboring cell sets

1D numerical fluxes

- $\bar{p}_{q c}=p_{c}^{n}-\tilde{z}_{q c}\left(\overline{\boldsymbol{u}}_{q}-\boldsymbol{u}_{c}^{n}\right) \cdot \boldsymbol{n}_{q c}$
- $\tilde{z}_{q c}>0$ local approximation of the acoustic impedance

Conservation

- $\sum_{c} m_{c} \mathrm{U}_{c}^{n+1}=\sum_{c} m_{c} \mathrm{U}_{c}^{n}+\mathrm{BC} \quad ?$
- For sake of simplicity, we consider $\mathrm{BC}=0$
- Necessary condition: $\sum_{c} \sum_{q \in \mathcal{Q}_{c}} \bar{p}_{q c} l_{q c} \boldsymbol{n}_{q c}=\mathbf{0}$

Example of a solver: LCCDG schemes

- Conditions suffisantes
- $\forall p \in \mathcal{P}(\omega), \quad \sum_{c \in \mathcal{C}_{p}}\left[\bar{p}_{p c}^{-} l_{p c}^{-} \boldsymbol{n}_{p c}^{-}+\bar{p}_{p c}^{+} l_{p c}^{+} \boldsymbol{n}_{p c}^{+}\right]=\mathbf{0}$

$$
\Longrightarrow \quad \bar{u}_{p}=\left(\sum_{c \in \mathcal{C}_{p}} \mathrm{M}_{p c}\right)^{-1} \sum_{c \in \mathcal{C}_{p}}\left(\mathrm{M}_{p c} \boldsymbol{u}_{c}^{n}+p_{c}^{n} l_{p c} \boldsymbol{n}_{p c}\right)
$$

- $\forall q \in \mathcal{Q}(\omega) \backslash \mathcal{P}(\omega), \quad\left(\bar{p}_{q L}-\bar{p}_{q R}\right) I_{q L} \boldsymbol{n}_{q L}=\mathbf{0} \quad \Longleftrightarrow \quad \bar{p}_{q L}=\bar{p}_{q R}$

$$
\Longrightarrow \quad \bar{u}_{q}=\left(\frac{\widetilde{z}_{q L} \boldsymbol{u}_{L}^{n}+\widetilde{z}_{q R} \boldsymbol{u}_{R}^{n}}{\widetilde{z}_{q L}+\widetilde{z}_{q R}}\right)-\frac{p_{R}^{n}-p_{L}^{n}}{\widetilde{z}_{q L}+\widetilde{z}_{q R}} \boldsymbol{n}_{q f_{p p+}}
$$

Convex combinaison

- $\mathrm{U}_{c}^{n+1}=\mathrm{U}_{c}^{n}-\frac{\Delta t^{n}}{m_{c}} \sum_{q \in \mathcal{Q}_{c}} \overline{\mathrm{~F}}_{q c} \cdot I_{q c} \boldsymbol{n}_{q c}+\frac{\Delta t^{n}}{m_{c}} \mathrm{~F}\left(\mathrm{U}_{c}^{n}\right) \cdot \underbrace{\sum_{q \in \mathcal{Q}_{c}} I_{q c} \boldsymbol{n}_{q c}}_{=0}$
- $\mathrm{U}_{c}^{n+1}=\left(1-\lambda_{c}\right) \mathrm{U}_{c}^{n}+\sum_{q \in \mathcal{Q}_{c}} \lambda_{q c} \overline{\mathrm{U}}_{q c}$

Definitions

- $\lambda_{q c}=\frac{\Delta t^{n}}{m_{c}} \tilde{z}_{q c} l_{q c} \quad$ and $\quad \lambda_{c}=\sum_{q \in \mathcal{Q}_{c}} \lambda_{q c}$
- $\bar{U}_{q c}=\mathrm{U}_{c}^{n}-\frac{\left(\overline{\mathrm{F}}_{q c}-\mathrm{F}\left(\mathrm{U}_{c}^{n}\right)\right)}{\widetilde{z}_{q c}} \cdot \boldsymbol{n}_{q c}$

CFL condition

$$
\text { - } \Delta t^{n} \leq \frac{m_{c}}{\sum_{q \in \mathcal{Q}_{c}} \tilde{z}_{q c} I_{q c}} \quad\left(=\frac{\left|\omega_{c}^{n}\right|}{a_{c}^{n} \sum_{q \in \mathcal{Q}_{c}} I_{q c}} \quad \text { if } \quad \tilde{z}_{q c} \equiv z_{c}^{n}=\rho_{c}^{n} a_{c}^{n}\right)
$$

Semi-discret first-order scheme

- $m_{c} \frac{\mathrm{~d} \mathrm{U}_{c}}{\mathrm{~d} t}=-\sum_{q \in \mathcal{Q}_{c}} \overline{\mathrm{~F}}_{q c} \cdot l_{q c} \boldsymbol{n}_{q c}$

Gibbs identity

- $T \mathrm{~d} S=\mathrm{d} \varepsilon+p \mathrm{~d} \tau=\mathrm{d} \boldsymbol{e}-\boldsymbol{u} \cdot \mathrm{d} \boldsymbol{u}+p \mathrm{~d} \tau$

Semi-discret production of entropy

- $m_{c} T_{c} \frac{\mathrm{~d} S_{c}}{\mathrm{~d} t}=m_{c} \frac{\mathrm{~d} e_{c}}{\mathrm{~d} t}+\boldsymbol{u}_{c} \cdot m_{c} \frac{\mathrm{~d} \boldsymbol{u}_{c}}{\mathrm{~d} t}+p_{c} m_{c} \frac{\mathrm{~d} \tau_{c}}{\mathrm{~d} t}$
- $m_{c} T_{c} \frac{\mathrm{~d} S_{c}}{\mathrm{~d} t}=\sum_{q \in \mathcal{Q}_{c}} \tilde{z}_{q c} l_{q c}\left[\left(\overline{\boldsymbol{u}}_{q}-\boldsymbol{u}_{c}\right) \cdot \boldsymbol{n}_{q c}\right]^{2} \geq 0$

Positivity of the discrete scheme
F. Vilar, C.-W. Shu and P.-H. Maire, Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: Form first-order to high-orders. Part II: The 2D case. JCP, 2016.

(1) Introduction

(2) 1D gas dynamics system of equations
(3) First-order numerical scheme for the 1D gas dynamics
4. High-order extension in the 1D case
(5) Numerical results in 1D

6 2 D gas dynamics system of equations
(7) First-order numerical scheme for the 2D gas dynamics
(8) High-order extension in the 2D case
(9) Numerical results in 2D

Mean values equation

- $\mathrm{U}_{c}^{n+1}=\mathrm{U}_{c}^{n}-\frac{\Delta t^{n}}{m_{c}} \sum_{q \in \mathcal{Q}_{c}} \overline{\mathrm{~F}}_{q c} \cdot I_{q c} \boldsymbol{n}_{q c}$
- In $\bar{F}_{q c}$, the mean values are substituted by the high-order values $U_{q c}$ in ω_{c} at points q

Updated or total Lagrangian formulation

- $\quad \rho \frac{\mathrm{d} \mathrm{U}}{\mathrm{d} t}+\nabla_{X} \cdot \mathrm{~F}(\mathrm{U})=0 \quad$ ou $\quad \rho^{\rho} \frac{\mathrm{d} \mathrm{U}}{\mathrm{d} t}+\nabla_{X} \cdot\left(|\mathrm{~J}| \mathrm{J}^{-1} \mathrm{~F}(\mathrm{U})\right)=0$

Piecewise polynomial approximation

- $U_{h, c}^{n}(\boldsymbol{x})$ the polynomial approximation of the solution on ω_{c}^{n}
- $U_{h, c}^{n}(\boldsymbol{X})$ the polynomial approximation of the solution on ω_{c}^{0}
- $\mathrm{U}_{q c}=\mathrm{U}_{h, c}^{n}\left(\boldsymbol{x}_{q}\right)$ (moving config.) or $\mathrm{U}_{q c}=\mathrm{U}_{h, c}^{n}\left(\boldsymbol{X}_{q}\right)$ (fixed config.)

(1) Introduction

(2) 1D gas dynamics system of equations
(3) First-order numerical scheme for the 1D gas dynamics
4. High-order extension in the 1D case
(5) Numerical results in 1D

6 2 D gas dynamics system of equations
(7) First-order numerical scheme for the 2D gas dynamics
(8) High-order extension in the 2D case
(9) Numerical results in 2D

Sedov point blast problem

(a) Pressure field

(b) Density profiles

Figure : Solution at time $t=1$ for a Sedov problem on a 30×30 Cartesian mesh

Sedov point blast problem

(a) Pressure field

(b) Density profiles

Figure : Solution at time $t=1$ for a Sedov problem on a 30×30 Cartesian mesh

Sedov point blast problem

(c) Triangular grid - 1110 cells

(d) Polygonal grid - 775 cells

Figure : Initial unstructured grids for Sedov point blast problem

Sedov point blast problem

Figure : Solution at time $t=1$ for a Sedov problem on a grid made of 1110 triangular cells

Sedov point blast problem

Figure : Solution at time $t=1$ for a Sedov problem on a grid made of 775 polygonal cells

Underwater TNT explosion

(i) Density field - 2nd order

(j) Density profiles

Figure : Solution at time $t=2.5 \times 10^{-4}$ for a underwater TNT explosion on a 120×9 polar mesh

Underwater TNT explosion

(i) Density field - 2nd order

(j) Density profiles

Figure : Solution at time $t=2.5 \times 10^{-4}$ for a underwater TNT explosion on a 120×9 polar mesh

Aluminium projectile impact problem

Figure : Solution at time $t=0.05$ for a projectile impact problem on a 100×10 Cartesian mesh

Aluminium projectile impact problem

Figure : Solution at time $t=0.05$ for a projectile impact problem on a 100×10 Cartesian mesh

Taylor-Green vortex

1.
0.9

Figure : Final deformed grids at time $t=0.75$, on a 10×10 Cartesian mesh

Taylor-Green vortex

1.
0.9

Figure : Final deformed grids at time $t=0.75$, on a 10×10 Cartesian mesh

Convergence rates

	L_{1}		L_{2}		L_{∞}	
h	$E_{L_{1}}^{h}$	$q_{L_{1}}^{h}$	$E_{L_{2}}^{h}$	$q_{L_{2}}^{h}$	$E_{L_{\infty}}^{h}$	$q_{L_{\infty}}^{h}$
$\frac{1}{10}$	$5.06 \mathrm{E}-3$	1.94	$6.16 \mathrm{E}-3$	1.93	$2.20 \mathrm{E}-2$	1.84
$\frac{1}{20}$	$1.32 \mathrm{E}-3$	1.98	$1.62 \mathrm{E}-3$	1.97	$5.91 \mathrm{E}-3$	1.95
$\frac{1}{40}$	$3.33 \mathrm{E}-4$	1.99	$4.12 \mathrm{E}-4$	1.99	$1.53 \mathrm{E}-3$	1.98
$\frac{1}{80}$	$8.35 \mathrm{E}-5$	2.00	$1.04 \mathrm{E}-4$	2.00	$3.86 \mathrm{E}-4$	1.99
$\frac{1}{160}$	$2.09 \mathrm{E}-5$	-	$2.60 \mathrm{E}-5$	-	$9.69 \mathrm{E}-5$	-

Table: Convergence rates on the pressure for a 2nd order DG scheme

Taylor-Green vortex

1
0.9

(n) 3rd order

(o) Exact solution

Figure : Final deformed grids at time $t=0.75$, on a 10×10 Cartesian mesh

Taylor-Green vortex

1
0.9

(n) 3rd order

(o) Exact solution

Figure : Final deformed grids at time $t=0.75$, on a 10×10 Cartesian mesh

Convergence rates

	L_{1}		L_{2}		L_{∞}	
h	$E_{L_{1}}^{h}$	$q_{L_{1}}^{h}$	$E_{L_{2}}^{h}$	$q_{L_{2}}^{h}$	$E_{L_{\infty}}^{h}$	$q_{L_{\infty}}^{h}$
$\frac{1}{10}$	$2.67 \mathrm{E}-4$	2.96	$3.36 \mathrm{E}-7$	2.94	$1.21 \mathrm{E}-3$	2.86
$\frac{1}{20}$	$3.43 \mathrm{E}-5$	2.97	$4.36 \mathrm{E}-5$	2.96	$1.66 \mathrm{E}-4$	2.93
$\frac{1}{40}$	$4.37 \mathrm{E}-6$	2.99	$5.59 \mathrm{E}-6$	2.98	$2.18 \mathrm{E}-5$	2.96
$\frac{1}{80}$	$5.50 \mathrm{E}-7$	2.99	$7.06 \mathrm{E}-7$	2.99	$2.80 \mathrm{E}-6$	2.99
$\frac{1}{160}$	$6.91 \mathrm{E}-8$	-	$8.87 \mathrm{E}-8$	-	$3.53 \mathrm{E}-7$	-

Table: Convergence rates on the pressure for a 3rd order DG scheme

Polar meshes - symmetry preservation

(p) 100×3

(q) 100×1

Figure : Curvilinear grids defined in polar coordinates

Sod shock tube problem - symmetry preservation

(r) 1st order

(s) 2nd order

Figure : Density fields with 1st and 2nd order schemes on a 3rd mesh

Sod shock tube problem - symmetry preservation

(t) Density field

(u) Density profiles

Figure : 3rd order solution for a Sod shock tube problem on a 100×3 polar grid

Sod shock tube problem - symmetry preservation

(v) Density field

(w) Density profiles

Figure : 3rd order solution for a Sod shock tube problem on a 100×1 polar grid

Sod shock tube problem - symmetry preservation

(v) Density field

(w) Density profiles

Figure : 3rd order solution for a Sod shock tube problem on a 100×1 polar grid

Gresho-like vortex problem

Figure : Final deformed grids at time $t=1$, on a 20×18 polar mesh

Gresho-like vortex problem

Figure : Final deformed grids at time $t=1$, on a 20×18 polar mesh

Gresho-like vortex problem

(c) 3rd order

(d) Exact solution

Figure : Final deformed grids at time $t=1$, on a 20×18 polar mesh

Gresho-like vortex problem

(c) 3rd order

(d) Exact solution

Figure : Final deformed grids at time $t=1$, on a 20×18 polar mesh

Gresho-like vortex problem

(e) Velocity profiles

(f) Pressure profiles

Figure : Velocity and pressure profiles at time $t=1$, on a 20×18 polar grid

Gresho-like vortex problem

Figure : Density profiles at time $t=1$, on a 20×18 polar grid

Kidder isentropic compression

(g) 1st order

(h) 2nd order

Figure : Intial and final grids for a Kidder problem on a 10×5 polar mesh

Kidder isentropic compression

Figure : Interior and exterior shell radii evolution for a Kidder problem on a 10×5 polar mesh

Kidder isentropic compression

(i) Initial and final grids

(j) Shell radii evolution

Figure : 3rd order solution for a Kidder compression problem on a 10×3 polar grid

Accuracy and computational time for a Taylor-Green vortex

D.O.F	N	$E_{L_{1}}^{h}$	$E_{L_{2}}^{h}$	$E_{L_{\infty}}^{h}$	time (sec)
600	24×25	$2.67 \mathrm{E}-2$	$3.31 \mathrm{E}-2$	$8.55 \mathrm{E}-2$	2.01
2400	48×50	$1.36 \mathrm{E}-2$	$1.69 \mathrm{E}-2$	$4.37 \mathrm{E}-2$	11.0

Table: 1st order scheme

D.O.F	N	$E_{L_{1}}^{h}$	$E_{L_{2}}^{h}$	$E_{L_{\infty}}^{h}$	time (sec)
630	14×15	$2.76 \mathrm{E}-3$	$3.33 \mathrm{E}-3$	$1.07 \mathrm{E}-2$	2.77
2436	28×29	$7.52 \mathrm{E}-4$	$9.02 \mathrm{E}-4$	$2.73 \mathrm{E}-3$	11.3

Table: 2nd order scheme

D.O.F	N	$E_{L_{1}}^{h}$	$E_{L_{2}}^{h}$	$E_{L_{\infty}}^{h}$	time (sec)
600	10×10	$2.67 \mathrm{E}-4$	$3.36 \mathrm{E}-4$	$1.21 \mathrm{E}-3$	4.00
2400	20×20	$3.43 \mathrm{E}-5$	$4.36 \mathrm{E}-5$	$1.66 \mathrm{E}-4$	30.6

Table: 3rd order scheme

Taylor-Green vortex

MESH FOR A TAYLOR-GREEN PROBLEM WITH A 3rd ORDER SCHEME

(k) 3rd order

(I) 5th order

Figure : Final deformed grids at time $t=0.6$, for 16 triangular cells meshes

Taylor-Green vortex

MESH FOR A TAYLOR-GREEN PROBLEM WITH A 3rd ORDER SCHEME

(k) 3rd order

(I) 5th order

Figure : Final deformed grids at time $t=0.6$, for 16 triangular cells meshes

Sod shock tube problem - symmetry preservation

Figure : 4th order solution for a Sod shock tube problem on a polar grid made of 308 triangular cells
F. Vilar, C.-W. Shu and P.-H. Maire, Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: Form first-order to high-orders. Part II: The 2D case. JCP, 2016.
圊 F. Vilar, C.-W. Shu and P.-H. Maire, Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: Form first-order to high-orders. Part I: The 1D case. JCP, 2016.
F. Vilar, P.-H. Maire and R. Abgrall, A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total lagrangian formulation on general unstructured grids. JCP, 2014.
围 F. VILAR, Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics. CAF, 2012.

- F. Vilar, P.-H. Maire and R. Abgrall, Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics. CAF, 2010.

Sedov point blast problem - spurious deformations

(o) Density field

(p) Density profiles

Figure : Third-order solution at time $t=1$ for a Sedov problem on a 30×30 Cartesian mesh

