Introduction aux schémas Lagrangiens centrés

François Vilar

Institut Montpelliérain Alexander Grothendieck Université de Montpellier

25 Novembre 2016

François Vilar (IMAG)

Schémas Lagrangiens centrés

25 Novembre 2016

- 2) Système d'équations de la dynamique des gaz en 1D
- 3 Schéma numérique d'ordre 1 en 1D
- Extension à l'ordre élevé en 1D
- Résultats numériques en 1D
- Système d'équations de la dynamique des gaz en 2D
 - 7 Schéma numérique d'ordre 1 en 2D
 - 8 Extension à l'ordre élevé en 2D
 - Résultats numériques en 2D

Formalisme eulérien (description spatiale)

- Référentiel fixe attaché à l'observateur
- Zone d'observation fixe à travers laquelle le fluide s'écoule

Formalisme lagrangien (description matérielle)

- Référentiel mobile attaché à la matière
- Zone d'observation déplacée et déformée au gré de l'écoulement

Avantages du formalisme lagrangien

- Adapté à l'étude de problèmes présentant de grandes déformations
- Suivi naturel des interfaces dans les écoulements multi-matériaux
- Pas de diffusion numérique de la discrétisation des termes de convection

Inconvénients de formalisme lagrangien

- Problème de robustesse en présence de vorticités ou cisaillements
 - ⇒ Méthodes ALE (Arbitrary Lagrangian-Eulerian)

Formulation décalée

Schémas volumes finis sur maillage mobile

- J. K. Dukowicz: CAVEAT scheme, 1986
- B. Després: GLACE scheme, 2005
- P.-H. Maire: EUCCLHYD scheme, 2007
- J. Cheng: High-order ENO conservative Lagrangian scheme, 2007
- S. Del Pino: Curvilinear finite-volume Lagrangian scheme, 2010
- P. Hoch: Finite volume method on unstructured conical meshes, 2011
- A. J. Barlow: Dual grid high-order Godunov scheme, 2012

Schémas Galerkin discontinu sur maillage initial

- R. Loubère: DG scheme for Lagrangian hydrodynamics, 2004
- Z. Jia: DG spectral finite element for Lagrangian hydrodynamics, 2010
- F. Vilar: High-order DG scheme for Lagrangian hydrodynamics, 2012

Introduction

2) Système d'équations de la dynamique des gaz en 1D

- 3 Schéma numérique d'ordre 1 en 1D
- 4 Extension à l'ordre élevé en 1D
- 5 Résultats numériques en 1D
- Système d'équations de la dynamique des gaz en 2D
- Schéma numérique d'ordre 1 en 2D
- 8 Extension à l'ordre élevé en 2D
 - Résultats numériques en 2D

Définitions

- ρ est la densité du fluide
- u est la vitesse du fluide
- e est l'énergie totale spécifique du fluide
- p est la pression du fluide
- $\varepsilon = e \frac{1}{2}u^2$ est l'énergie interne spécifique du fluide

Équations d'euler

•
$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0$$

• $\frac{\partial \rho u}{\partial t} + \frac{\partial (\rho u^2 + \rho)}{\partial x} = 0$
• $\frac{\partial \rho e}{\partial t} + \frac{\partial (\rho u e + \rho u)}{\partial x} = 0$

Équation de continuité

Conservation du moment

Conservation de l'énergie

Fermeture thermodynamique

•
$$\boldsymbol{p} = \boldsymbol{p}(\rho, \varepsilon)$$

Équation d'état

Conservation du moment

•
$$\frac{\partial \rho u}{\partial t} + \frac{\partial (\rho u^2 + p)}{\partial x} = 0$$

• $\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x}\right) + u \left(\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x}\right) + \frac{\partial p}{\partial x} = 0$
• $\rho \left(\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x}\right) + \frac{\partial p}{\partial x} = 0$

Conservation de l'énergie

•
$$\frac{\partial \rho e}{\partial t} + \frac{\partial (\rho u e + p u)}{\partial x} = 0$$

• $\rho \left(\frac{\partial e}{\partial t} + u \frac{\partial e}{\partial x}\right) + e\left(\underbrace{\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x}}_{=0}\right) + \frac{\partial p u}{\partial x} = 0$
• $\rho \left(\frac{\partial e}{\partial t} + u \frac{\partial e}{\partial x}\right) + \frac{\partial p u}{\partial x} = 0$

Définitions

- $\tau = \frac{1}{a}$ le volume spécifique
- $U = (\tau, u, e)^t$ le vecteur solution
- $F(U) = (-u, p, pu)^t$ le vecteur flux

Équation de continuité

•
$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0$$

• $\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + \rho \frac{\partial u}{\partial x} = 0$
• $\rho \left(\frac{\partial \tau}{\partial t} + u \frac{\partial \tau}{\partial x}\right) - \frac{\partial u}{\partial x} = 0$

Système non conservatif de la dynamique des gaz

•
$$\rho\left(\frac{\partial U}{\partial t} + u\frac{\partial U}{\partial x}\right) + \frac{\partial F(U)}{\partial x} = 0$$

Référentiel mobile

- X est la position d'un point fluide dans sa configuration initiale
- x(X, t) est la position actuelle de ce point, transporté par l'écoulement

Équation des trajectoires

•
$$\frac{\partial x(X,t)}{\partial t} = u(x(X,t),t)$$

• $x(X,0) = X$

Dérivée matérielle

f(x, t) est une variable fluide suffisamment régulière

•
$$\frac{\mathrm{d}f}{\mathrm{d}t} \equiv \frac{\partial f(x(X,t),t)}{\partial t} = \frac{\partial f}{\partial t} + u \frac{\partial f}{\partial x}$$

Lagrangien mobile

•
$$\rho \frac{\mathrm{d} \mathrm{U}}{\mathrm{d} t} + \frac{\partial \mathrm{F}(\mathrm{U})}{\partial x} = \mathrm{0}$$

Configuration mobile

Définitions

- $J = \frac{\partial x}{\partial X}$ est le jacobien associé à l'écoulement
- ρ^0 est la densité initiale du fluide

Conservation de la masse

•
$$\int_{\omega(0)} \rho^0 dX = \int_{\omega(t)} \rho dx$$

• $\int_{\omega(t)} \rho dx = \int_{\omega(0)} \rho J dX$
• $\rho J = \rho^0$

Lagrangien total

•
$$\rho^0 \frac{\mathrm{d} \mathrm{U}}{\mathrm{d} t} + \frac{\partial \mathrm{F}(\mathrm{U})}{\partial X} = 0$$

Configuration fixe

Définitions

- $dm = \rho dx = \rho^0 dX$ la variable de masse
- $A(U) = \frac{\partial F(U)}{\partial U}$ la matrice Jacobienne du système
- $a = a(\rho, \varepsilon)$ la vitesse du son

Formulation conservative

•
$$\frac{\mathrm{d} \mathrm{U}}{\mathrm{d} t} + \frac{\partial \mathrm{F}(\mathrm{U})}{\partial m} = 0$$

Formulation non conservative

Introduction

2) Système d'équations de la dynamique des gaz en 1D

- Schéma numérique d'ordre 1 en 1D
 - 4 Extension à l'ordre élevé en 1D
 - 5 Résultats numériques en 1D
- Système d'équations de la dynamique des gaz en 2D
- Schéma numérique d'ordre 1 en 2D
- 8 Extension à l'ordre élevé en 2D
 - Résultats numériques en 2D

Définitions

- $0 = t^0 < t^1 < \cdots < t^N = T$ est une partition du domaine temporel [0, T]
- $\Delta t^n = t^{n+1} t^n$ est le $n^{\text{ème}}$ pas de temps
- $\omega^0 = \bigcup_{i=1,l} \omega_i^0$ est une partition de domaine initial ω^0
- $\omega_i^0 = [X_{i-\frac{1}{2}}, X_{i+\frac{1}{2}}]$ est une maille quelconque de taille ΔX_i
- $\omega_i^n = [x_{i-\frac{1}{2}}^n, x_{i+\frac{1}{2}}^n]$ est l'image de ω_i^0 au temps t^n à travers l'écoulement
- $m_i = \rho_i^0 \Delta X_i = \rho_i^n \Delta x_i^n$ est la masse, constante, de la maille ω_i
- $U_i^n = (\tau_i^n, u_i^n, e_i^n)^t$ est la solution discrète

Schéma volumes finis d'ordre 1

•
$$U_i^{n+1} = U_i^n - \frac{\Delta t^n}{m_i} (\overline{\mathsf{F}}_{i+\frac{1}{2}}^n - \overline{\mathsf{F}}_{i-\frac{1}{2}}^n)$$

• $x_{i+\frac{1}{2}}^{n+1} = x_{i+\frac{1}{2}}^n + \Delta t^n \overline{u}_{i+\frac{1}{2}}^n$

Flux numériques

•
$$\overline{\mathsf{F}}_{i+\frac{1}{2}}^n = (-\overline{u}_{i+\frac{1}{2}}^n, \overline{p}_{i+\frac{1}{2}}^n, \overline{p}_{i+\frac{1}{2}}^n, \overline{u}_{i+\frac{1}{2}}^n)^{\mathrm{t}}$$

Linéarisation à deux états

•
$$\frac{\mathrm{d}\,\mathrm{U}}{\mathrm{d}t} + \mathrm{A}(\mathrm{U})\frac{\partial\,\mathrm{U}}{\partial m} = 0 \implies \begin{cases} \frac{\mathrm{d}\,\mathrm{U}}{\mathrm{d}t} + \mathrm{A}(\widetilde{\mathrm{U}_{\mathrm{L}}})\frac{\partial\,\mathrm{U}}{\partial m} = 0 & \text{si } m - m_i < 0 \\ \\ \frac{\mathrm{d}\,\mathrm{U}}{\mathrm{d}t} + \mathrm{A}(\widetilde{\mathrm{U}_{\mathrm{R}}})\frac{\partial\,\mathrm{U}}{\partial m} = 0 & \text{si } m - m_i > 0 \end{cases}$$

Problème de Riemann simple

• U(<i>m</i> , 0) = {	U _L U _R	si <i>m-m_i</i> < 0 si <i>m-m_i</i> > 0			
• U(<i>m</i> , 0) =	$ \begin{array}{c} U_L\\ \overline{U}^-\\ \overline{U}^+\\ U_R \end{array} $	$\begin{array}{l} \operatorname{si} m { - m_i < - \widetilde{z}_L t} \\ \operatorname{si} { - \widetilde{z}_L t < m { - m_i < 0 } } \\ \operatorname{si} { \widetilde{z}_R t > m { - m_i > 0 } } \\ \operatorname{si} { m { - m_i > \widetilde{z}_R t } } \end{array}$			
Relations					
• $\widetilde{z}_L = \widetilde{\rho a}_L > 0$, $\widetilde{z}_R = \widetilde{\rho a}_R > 0$					
$\bullet \overline{U}^- = \overline{U}^+ = \overline{U}$	\overline{n}^{-}	$=\overline{a}^+=\overline{a}$			

Flux numériques

•
$$\overline{u} = \frac{\widetilde{z}_L u_L + \widetilde{z}_R u_R}{\widetilde{z}_L + \widetilde{z}_R} - \frac{1}{\widetilde{z}_L + \widetilde{z}_R} (p_R - p_L)$$

• $\overline{p} = \frac{\widetilde{z}_R p_L + \widetilde{z}_L p_R}{\widetilde{z}_L + \widetilde{z}_R} - \frac{\widetilde{z}_L \widetilde{z}_R}{\widetilde{z}_L + \widetilde{z}_R} (u_R - u_L)$

États intermédiaires

•
$$\overline{\tau}^{-} = \tau_L + \frac{\overline{u} - u_L}{\widetilde{z}_L}$$
 et $\overline{\tau}^{+} = \tau_R - \frac{\overline{u} - u_R}{\widetilde{z}_R}$
• $\overline{e}^{-} = e_L - \frac{\overline{p}\,\overline{u} - p_L\,u_L}{\widetilde{z}_L}$ et $\overline{e}^{+} = e_R + \frac{\overline{p}\,\overline{u} - p_R\,u_R}{\widetilde{z}_R}$

Solveur acoustique

•
$$\widetilde{z}_L \equiv z_L = \rho_L a_L$$

•
$$\widetilde{z}_R \equiv z_R = \rho_R a_R$$

Impédance acoustique à gauche Impédance acoustique à droite

Combinaison convexe

•
$$\mathbf{U}_{i}^{n+1} = \mathbf{U}_{i}^{n} - \frac{\Delta t^{n}}{m_{i}} (\overline{\mathbf{F}}_{i+\frac{1}{2}}^{n} - \overline{\mathbf{F}}_{i-\frac{1}{2}}^{n}) \pm \frac{\Delta t^{n}}{m_{i}} \mathbf{F}(\mathbf{U}_{i}^{n}) \pm \frac{\Delta t^{n}}{m_{i}} (\widetilde{z}_{i+\frac{1}{2}}^{-} + \widetilde{z}_{i-\frac{1}{2}}^{+}) \mathbf{U}_{i}^{n}$$

• $\mathbf{U}_{i}^{n+1} = (1 - \lambda_{i}) \mathbf{U}_{i}^{n} + \lambda_{i+\frac{1}{2}}^{-} \overline{\mathbf{U}}_{i+\frac{1}{2}}^{-} + \lambda_{i-\frac{1}{2}}^{+} \overline{\mathbf{U}}_{i+\frac{1}{2}}^{+}$

Définitions

•
$$\lambda_{i\pm\frac{1}{2}}^{\mp} = \frac{\Delta t^n}{m_i} \widetilde{Z}_{i\pm\frac{1}{2}}^{\mp}$$

•
$$\lambda_i = \lambda_{i+\frac{1}{2}}^- + \lambda_{i-\frac{1}{2}}^+$$

•
$$\overline{\mathsf{U}}_{i\pm\frac{1}{2}}^{\mp} = \mathsf{U}_{i}^{n} \mp \frac{\overline{\mathsf{F}}_{i\pm\frac{1}{2}}^{n} - \mathsf{F}(\mathsf{U}_{i}^{n})}{\widetilde{\mathsf{Z}}_{i\pm\frac{1}{2}}^{\mp}}$$

Condition CFL : $\lambda_i \leq 1$

•
$$\Delta t^n \leq \frac{m_i}{\widetilde{z}_{i+\frac{1}{2}}^- + \widetilde{z}_{i-}^+}$$

Schéma d'ordre 1 semi-discret en temps

•
$$m_i \frac{\mathrm{d} U_i}{\mathrm{d} t} = -\left(\overline{\mathsf{F}}(\mathsf{U}_i,\mathsf{U}_{i+1}) - \overline{\mathsf{F}}(\mathsf{U}_{i-1},\mathsf{U}_i)\right)$$

Relation de Gibbs

. . .

•
$$T dS = d\varepsilon + p d\tau = de - u du + p d\tau$$

Production d'entropie au niveau semi-discret

•
$$m_i T_i \frac{dS_i}{dt} = m_i \frac{de_i}{dt} + u_i m_i \frac{du_i}{dt} + p_i m_i \frac{d\tau_i}{dt}$$

• $m_i T_i \frac{dS_i}{dt} = \tilde{z}_{i+\frac{1}{2}}^- (\overline{u}_{i+\frac{1}{2}} - u_i)^2 + \tilde{z}_{i-\frac{1}{2}}^+ (\overline{u}_{i-\frac{1}{2}} - u_i)^2 \ge 0$

Introduction

- 2 Système d'équations de la dynamique des gaz en 1D
- 3 Schéma numérique d'ordre 1 en 1D
- 4 Extension à l'ordre élevé en 1D
- 5) Résultats numériques en 1D
- 5 Système d'équations de la dynamique des gaz en 2D
- 7 Schéma numérique d'ordre 1 en 2D
- 8 Extension à l'ordre élevé en 2D
 - Résultats numériques en 2D

Extension à l'ordre élevé du schéma volumes finisMUSCL, (W)ENO, DG, ...

Schéma sur les valeurs moyennes

•
$$U_i^{n+1} = U_i^n - \frac{\Delta t^n}{m_i} \left[\overline{F}(U_{i+\frac{1}{2}}^-, U_{i+\frac{1}{2}}^+) - \overline{F}(U_{i-\frac{1}{2}}^-, U_{i-\frac{1}{2}}^+) \right]$$

• $U_{i-\frac{1}{2}}^+$ et $U_{i+\frac{1}{2}}^-$ sont les valeurs d'ordre élevé dans ω_i aux points $x_{i-\frac{1}{2}}$ et $x_{i+\frac{1}{2}}$

Formulation mobile ou totale

Approximation polynomiale par morceaux

- $U_{h,i}^n(x)$ l'approximation polynomiale de la solution sur ω_i^n
- $U_{h,i}^n(X)$ l'approximation polynomiale de la solution sur ω_i^0
- $U_{i\pm\frac{1}{2}}^{\mp} = U_{h,i}^{n}(x_{i\pm\frac{1}{2}})$ (config. mobile) ou $U_{i\pm\frac{1}{2}}^{\mp} = U_{h,i}^{n}(x_{i\pm\frac{1}{2}})$ (config. fixe)

Introduction

- 2 Système d'équations de la dynamique des gaz en 1D
- 3 Schéma numérique d'ordre 1 en 1D
- 4) Extension à l'ordre élevé en 1D
- 5 Résultats numériques en 1D
- Système d'équations de la dynamique des gaz en 2D
- 7 Schéma numérique d'ordre 1 en 2D
- 8 Extension à l'ordre élevé en 2D
 - Résultats numériques en 2D

Solution initiale sur $X \in [0, 1]$

• $\rho^0(X) = 1 + 0.9999995 \sin(2\pi X), \quad u^0(X) = 0, \quad \rho^0(X) = \rho^0(X)^{\gamma}$

Conditions aux bords périodiques

Figure: Solutions sur 50 mailles à t = 0.1 pour un problème entropique régulier

Taux de convergence

	<i>L</i> ₁		L ₂		L_{∞}		
h	$E_{L_1}^h$	$q_{L_1}^h$	$E_{L_2}^h$	$q_{L_2}^h$	$E_{L_{\infty}}^{h}$	$q^h_{L_{\infty}}$	
$\frac{1}{50}$	9.69E-5	3.02	9.31E-5	3.01	2.75E-4	3.01	
$\frac{1}{100}$	1.19E-5	3.01	1.16E-5	3.00	3.40E-5	3.01	
$\frac{1}{200}$	1.48E-6	3.00	1.44E-6	3.00	4.923E-6	3.00	
$\frac{1}{400}$	1.85E-7	3.00	1.80E-7	3.00	5.26E-7	3.00	
$\frac{1}{800}$	2.30E-8	-	2.25E-8	-	6.56E-8	-	

Table: Taux de convergence sur la pression avec un schéma DG d'ordre3

Solution initiale sur $X \in [0, 1]$

•
$$(\rho^0, u^0, p^0) = \begin{cases} (1, 0, 1), & 0 < X < 0.5, \\ (0.125, 0, 0.1), & 0.5 < X < 1. \end{cases}$$

Figure: Solutions sur 100 mailles à t = 0.2 pour un tube à choc de Sod

Solution initiale sur $X \in [0, 9]$

•
$$(\rho^0, u^0, e^0) = \begin{cases} (1, 0, 0.1), & 0 < X < 3, \\ (0.001, 0, 10^{-7}), & 3 < X < 9. \end{cases}$$

François Vilar (IMAG)

Schémas Lagrangiens centrés

25 Novembre 2016 19 / 52

Convergence

0,

Solution initiale sur $X \in [-4, 4]$

•
$$(\rho^0, u^0, p^0) = \begin{cases} (1, -2, 0.4), & -4 < X < (1, 2, 0.4), & 0 < X < 4 \end{cases}$$

Solution initiale sur $X \in [0, 1.4]$

- $(\rho^0, u^0, p^0) = \begin{cases} (1.63 \times 10^{-3}, 0, 8.381 \times 10^3), \\ (1.025 \times 10^{-3}, 0, 1), \end{cases}$
- 0 < X < 0.16,0.16 < X < 3.0.
- Sur [0, 0.3], gaz issus de l'explosion (JWL EOS)
- Sur [0.3, 1.4], eau (EOS des gaz raides)

Figure: Solutions sur 400 mailles à t = 0.00025 pour une d'explosion sous-marine

Solution initiale sur $X \in [0, 0.05]$

•
$$\rho^{0}(X) = 2785$$
, $p^{0}(X) = 10^{-6}$, $u^{0}(X) = \begin{cases} 800, & 0 < X < 0.005, \\ 0, & 0.005 < X < 0.05. \end{cases}$

Aluminium (Mie-Grüneisen EOS)

Figure: Solutions sur 100 mailles à $t = 5 \times 10^{-6}$ pour l'impact de plaques d'aluminium

Introduction

- 2 Système d'équations de la dynamique des gaz en 1D
- 3 Schéma numérique d'ordre 1 en 1D
- 4) Extension à l'ordre élevé en 1D
- 5 Résultats numériques en 1D
- Système d'équations de la dynamique des gaz en 2D
 - 7) Schéma numérique d'ordre 1 en 2D
- 8 Extension à l'ordre élevé en 2D
 - Résultats numériques en 2D

Équations d'euler

•
$$\frac{\partial \rho}{\partial t} + \nabla_x \cdot \rho \, \boldsymbol{u} = 0$$

• $\frac{\partial \rho \, \boldsymbol{u}}{\partial t} + \nabla_x \cdot (\rho \, \boldsymbol{u} \otimes \boldsymbol{u} + \rho \, \boldsymbol{I}_d) = \boldsymbol{0}$
• $\frac{\partial \rho \, \boldsymbol{e}}{\partial t} + \nabla_x \cdot (\rho \, \boldsymbol{u} \, \boldsymbol{e} + \rho \, \boldsymbol{u}) = 0$

Équation des trajectoires

•
$$\frac{\mathrm{d} \boldsymbol{x}(\boldsymbol{X},t)}{\mathrm{d}t} = \boldsymbol{u}(\boldsymbol{x}(\boldsymbol{X},t),t), \qquad \boldsymbol{x}(\boldsymbol{X},0) = \boldsymbol{X}$$

Dérivée matérielle

•
$$\frac{\mathrm{d}f(\boldsymbol{x},t)}{\mathrm{d}t} = \frac{\partial f(\boldsymbol{x},t)}{\partial t} + \boldsymbol{u} \cdot \nabla_{\boldsymbol{x}} f(\boldsymbol{x},t)$$

Définitions

•
$$U = (\tau, \boldsymbol{u}, \boldsymbol{e})^{t}$$

• $F(U) = (-\boldsymbol{u}, \mathbb{1}(1)\boldsymbol{p}, \mathbb{1}(2)\boldsymbol{p}, \boldsymbol{p}\boldsymbol{u})^{t}$ où $\mathbb{1}(i) = (\delta_{i1}, \delta_{i2})^{t}$

Formulation lagrangienne mobile

•
$$\rho \frac{\mathrm{d} \mathrm{U}}{\mathrm{d} t} + \nabla_x \, \mathbf{.F}(\mathrm{U}) = \mathbf{0}$$

Tenseur gradient de déformation

$$\label{eq:started_$$

Conservation de masse

•
$$\rho |\mathsf{J}| = \rho^0$$

Formulation lagrangienne totale

•
$$\rho^0 \frac{\mathrm{d} \mathbf{U}}{\mathrm{d} t} + \nabla_X \cdot \left(|\mathbf{J}| \mathbf{J}^{-1} \mathbf{F}(\mathbf{U}) \right) = \mathbf{0}$$

Configuration fixe

Configuration mobile

Condition de Piola

Introduction

- 2 Système d'équations de la dynamique des gaz en 1D
- 3 Schéma numérique d'ordre 1 en 1D
- 4 Extension à l'ordre élevé en 1D
- 5 Résultats numériques en 1D
- Système d'équations de la dynamique des gaz en 2D
- Schéma numérique d'ordre 1 en 2D
- 8 Extension à l'ordre élevé en 2D

Définitions

- $0 = t^0 < t^1 < \cdots < t^N = T$ est une partition du domaine temporel [0, T]
- $\omega^0 = \bigcup_{c=1,l} \omega_c^0$ est une partition de domaine initial ω^0
- ω_c^n est l'image de ω_c^0 au temps t^n à travers l'écoulement
- m_c est la masse, constante, de la maille ω_c
- $U_c^n = (\tau_c^n, u_c^n, e_c^n)^t$ est la solution discrète

Intégration

•
$$U_c^{n+1} = U_c^n - \frac{\Delta t^n}{m_c} \int_{\partial \omega_c} \overline{\mathsf{F}} \cdot \mathbf{n} \, \mathrm{d}s$$

Intégration du terme de bord (analytique, quadrature, ...)

Schéma volumes finis générique d'ordre 1

•
$$U_c^{n+1} = U_c^n - \frac{\Delta t^n}{m_c} \sum_{q \in Q_c} \overline{F}_{qc} \cdot I_{qc} \boldsymbol{n}_{qc}$$

• $\overline{F}_{qc} = (-\overline{\boldsymbol{u}}_q, \ \mathbb{I}(1) \overline{p}_{qc}, \ \mathbb{I}(2) \overline{p}_{qc}, \ \overline{p}_{qc} \overline{\boldsymbol{u}}_q)^t$ flux numérique au point q
• $\boldsymbol{x}_q^{n+1} = \boldsymbol{x}_q^n + \Delta t^n \overline{\boldsymbol{u}}_q$

Définitions

- Q_c l'ensemble des points de contrôle de la maille ω_c
- *I_{qc} n_{qc}* normales au temps *tⁿ* à définir

Image: Image:

Remarque

- \overline{F}_{qc} est local à la maille ω_c
- Seul $\overline{u}_{qc} = \overline{u}_q$ est continu, afin de bouger le maillage
- Perte du caractère conservatif du schéma?

Conservation

•
$$\sum_{c} m_{c} U_{c}^{n+1} = \sum_{c} m_{c} U_{c}^{n} + BC$$
 ?

Pour simplifier, on considère que BC = 0

• Condition nécessaire :
$$\sum_{c} \sum_{q \in \mathcal{Q}_c} \overline{p}_{qc} I_{qc} n_{qc} = \mathbf{0}$$

Exemple solveur : schémas LCCDG

Conditions suffisantes

•
$$\forall \boldsymbol{p} \in \mathcal{P}(\omega), \quad \sum_{c \in \mathcal{C}_{p}} \left[\overline{\boldsymbol{p}}_{pc}^{-} \boldsymbol{I}_{pc}^{-} \boldsymbol{n}_{pc}^{-} + \overline{\boldsymbol{p}}_{pc}^{+} \boldsymbol{I}_{pc}^{+} \boldsymbol{n}_{pc}^{+} \right] = \mathbf{0}$$

$$\implies \quad \overline{\boldsymbol{u}}_{\rho} = \Big(\sum_{c \in \mathcal{C}_{\rho}} \mathsf{M}_{\rho c}\Big)^{-1} \sum_{c \in \mathcal{C}_{\rho}} \Big(\mathsf{M}_{\rho c} \boldsymbol{u}_{c}^{n} + p_{c}^{n} I_{\rho c} \boldsymbol{n}_{\rho c}\Big)$$

• $\forall q \in \mathcal{Q}(\omega) \setminus \mathcal{P}(\omega), \quad (\overline{p}_{qL} - \overline{p}_{qR}) \, l_{qL} \boldsymbol{n}_{qL} = \boldsymbol{0} \quad \Longleftrightarrow \quad \overline{p}_{qL} = \overline{p}_{qR}$

$$\implies \quad \overline{\boldsymbol{u}}_{q} = \left(\frac{\widetilde{z}_{qL} \, \boldsymbol{u}_{L}^{n} + \widetilde{z}_{qR} \, \boldsymbol{u}_{R}^{n}}{\widetilde{z}_{qL} + \widetilde{z}_{qR}}\right) - \frac{\boldsymbol{p}_{R}^{n} - \boldsymbol{p}_{L}^{n}}{\widetilde{z}_{qL} + \widetilde{z}_{qR}} \, \boldsymbol{n}_{qf_{pp^{+}}}$$

Combinaison convexe

•
$$U_c^{n+1} = U_c^n - \frac{\Delta t^n}{m_c} \sum_{q \in \mathcal{Q}_c} \overline{F}_{qc} \cdot l_{qc} n_{qc} + \frac{\Delta t^n}{m_c} F(U_c^n) \cdot \sum_{\substack{q \in \mathcal{Q}_c \\ = 0}} l_{qc} n_{qc}$$

• $U_c^{n+1} = (1 - \lambda_c) U_c^n + \sum_{q \in \mathcal{Q}_c} \lambda_{qc} \overline{U}_{qc}$

Définitions

•
$$\lambda_{qc} = \frac{\Delta t^n}{m_c} \widetilde{Z}_{qc} I_{qc}$$
 et $\lambda_c = \sum_{q \in Q_c} \lambda_{qc}$
• $\overline{U}_{qc} = U_c^n - \frac{(\overline{F}_{qc} - F(U_c^n))}{\widetilde{Z}_{qc}} \cdot n_{qc}$

Condition CFL

•
$$\Delta t^n \leq \frac{m_c}{\sum\limits_{q \in \mathcal{Q}_c} \widetilde{z}_{qc} l_{qc}} \quad \left(= \frac{|\omega_c^n|}{a_c^n \sum\limits_{q \in \mathcal{Q}_c} l_{qc}} \quad \text{si} \quad \widetilde{z}_{qc} \equiv z_c^n = \rho_c^n a_c^n \right)$$

Schéma d'ordre 1 semi-discret en temps

•
$$m_c \frac{\mathrm{d} U_c}{\mathrm{d} t} = -\sum_{q \in \mathcal{Q}_c} \overline{\mathsf{F}}_{qc} \cdot I_{qc} n_{qc}$$

Relation de Gibbs

•
$$T dS = d\varepsilon + p d\tau = de - u \cdot du + p d\tau$$

Production entropique au niveau semi-discret

•
$$m_c T_c \frac{\mathrm{d} S_c}{\mathrm{d}t} = m_c \frac{\mathrm{d} e_c}{\mathrm{d}t} + u_c \cdot m_c \frac{\mathrm{d} u_c}{\mathrm{d}t} + p_c m_c \frac{\mathrm{d} \tau_c}{\mathrm{d}t}$$

• $m_c T_c \frac{\mathrm{d} S_c}{\mathrm{d}t} = \sum_{q \in Q_c} \tilde{z}_{qc} I_{qc} \left[(\overline{u}_q - u_c) \cdot n_{qc} \right]^2 \ge 0$

Introduction

- 2 Système d'équations de la dynamique des gaz en 1D
- 3 Schéma numérique d'ordre 1 en 1D
- 4 Extension à l'ordre élevé en 1D
- 5 Résultats numériques en 1D
- 6 Système d'équations de la dynamique des gaz en 2D
- 7) Schéma numérique d'ordre 1 en 2D
- 8 Extension à l'ordre élevé en 2D

Schéma sur les valeurs moyennes

•
$$U_c^{n+1} = U_c^n - \frac{\Delta t^n}{m_c} \sum_{q \in Q_c} \overline{\mathsf{F}}_{qc} \cdot I_{qc} \boldsymbol{n}_{qc}$$

 Dans F
{qc}, les valeurs moyennes sont remplacées par les valeurs d'ordre élevé U{qc} dans ω_c aux points q

Formulation mobile ou totale

•
$$\rho \frac{\mathrm{d} \mathbf{U}}{\mathrm{d} t} + \nabla_{\mathbf{X}} \cdot \mathbf{F}(\mathbf{U}) = 0$$
 ou $\rho^{0} \frac{\mathrm{d} \mathbf{U}}{\mathrm{d} t} + \nabla_{\mathbf{X}} \cdot \left(|\mathbf{J}| \mathbf{J}^{-1} \mathbf{F}(\mathbf{U}) \right) = 0$

Approximation polynomiale par morceaux

- $U_{h,c}^{n}(\mathbf{x})$ l'approximation polynomiale de la solution sur ω_{c}^{n}
- $U_{h,c}^{n}(\mathbf{X})$ l'approximation polynomiale de la solution sur ω_{c}^{0}
- $U_{qc} = U_{h,c}^n(\textbf{\textit{x}}_q)$ (config. mobile) ou $U_{qc} = U_{h,c}^n(\textbf{\textit{X}}_q)$ (config. fixe)

(D) (A) (A) (A) (A)

Introduction

- 2 Système d'équations de la dynamique des gaz en 1D
- 3 Schéma numérique d'ordre 1 en 1D
- 4 Extension à l'ordre élevé en 1D
- 5 Résultats numériques en 1D
- 6 Système d'équations de la dynamique des gaz en 2D
- 7 Schéma numérique d'ordre 1 en 2D
- 8 Extension à l'ordre élevé en 2D
- Résultats numériques en 2D

Détonation de Sedov

Figure : Champs de densité à t = 1 pour un problème de type Sedov sur un maillage cartésien 30×30

Détonation de Sedov

Figure : Champs de densité à t = 1 pour un problème de type Sedov sur un maillage cartésien 30×30

(a) Champ de pression - ordre 2

Explosion sous-marine d'une charge de TNT

Figure : Solution d'ordre 2 à $t = 2.5 \times 10^{-4}$ pour un problème d'explosion sous-marine sur un maillage polaire 120×9

Explosion sous-marine d'une charge de TNT

(c) Champ de densité - ordre 2

Figure : Solution d'ordre 2 à $t = 2.5 \times 10^{-4}$ pour un problème d'explosion sous-marine sur un maillage polaire 120×9

Impact d'une plaque d'aluminium

(e) Champ de densité

Figure : Solution d'ordre 2 à t = 0.05 pour un problème d'impact sur un maillage cartésien 100×10

Tourbillon de type Taylor-Green

François Vilar (IMAG)

Schémas Lagrangiens centrés

25 Novembre 2016 36 / 52

Tourbillon de type Taylor-Green

(f) Ordre 2

Figure : Grilles au temps final t = 0.75, sur un maillage cartésien 10×10

Taux de convergence

	<i>L</i> ₁		L ₂		L_{∞}		
h	$E_{L_1}^h$	$q_{L_1}^h$	$E_{L_2}^h$	$q_{L_2}^h$	$E_{L_{\infty}}^{h}$	$q^h_{L_{\infty}}$	
$\frac{1}{10}$	5.06E-3	1.94	6.16E-3	1.93	2.20E-2	1.84	
$\frac{1}{20}$	1.32E-3	1.98	1.62E-3	1.97	5.91E-3	1.95	
$\frac{1}{40}$	3.33E-4	1.99	4.12E-4	1.99	1.53E-3	1.98	
$\frac{1}{80}$	8.35E-5	2.00	1.04E-4	2.00	3.86E-4	1.99	
$\frac{1}{160}$	2.09E-5	-	2.60E-5	-	9.69E-5	-	

Table: Taux de convergence sur la pression avec un schéma DG d'ordre2

Tourbillon de type Taylor-Green

Tourbillon de type Taylor-Green

(h) Ordre 3

François Vilar (IMAG)

Schémas Lagrangiens centrés

Taux de convergence

	L ₁		L ₂		L_{∞}		
h	$E_{L_1}^h$	$q_{L_1}^h$	$E_{L_2}^h$	$q_{L_2}^h$	$E_{L_{\infty}}^{h}$	$q^h_{L_{\infty}}$	
$\frac{1}{10}$	2.67E-4	2.96	3.36Ē-7	2.94	1.21E-3	2.86	
$\frac{1}{20}$	3.43E-5	2.97	4.36E-5	2.96	1.66E-4	2.93	
$\frac{1}{40}$	4.37E-6	2.99	5.59E-6	2.98	2.18E-5	2.96	
$\frac{1}{80}$	5.50E-7	2.99	7.06E-7	2.99	2.80E-6	2.99	
$\frac{1}{160}$	6.91E-8	-	8.87E-8	-	3.53E-7	-	

Table: Taux de convergence sur la pression avec un schéma DG d'ordre3

Maillages polaires - préservation de la symétrie

François Vilar (IMAG)

Schémas Lagrangiens centrés

25 Novembre 2016 40 / 52

Figure : Champs densité pour l'ordre 1 et 2 sur maillages d'ordre 3

(r) Ordre 1

(s) Ordre 2

Figure : Grilles au temps final t = 1, sur un maillage polar 20 \times 18

François Vilar (IMAG)

Schémas Lagrangiens centrés

25 Novembre 2016 44 / 52

(t) Ordre 3

(u) Solution exacte

Figure : Grilles au temps final t = 1, sur un maillage polar 20 \times 18

François Vilar (IMAG)

Schémas Lagrangiens centrés

25 Novembre 2016 45 / 52

Figure : Comparaison des profils de densité au temps final t = 1, sur un maillage polar 20 × 18

Compression isentropique de Kidder

Figure : Grilles initiales et finales pour un problème de Kidder sur une grille polaire 10×5

François Vilar (IMAG)

Schémas Lagrangiens centrés

Compression isentropique de Kidder

Compression isentropique de Kidder

Précision et temps de calcul pour un vortex de Taylor-Green

D.O.F	N	$E_{L_1}^h$	$E_{L_2}^h$	$E^h_{L_\infty}$	temps (sec)
600	24 imes 25	2.67É-2	3.31Ē-2	8.55E-2	2.01
2400	48 × 50	1.36E-2	1.69E-2	4.37E-2	11.0

Table: Méthode d'ordre 1

D.O.F	N	$E_{L_1}^h$	$E^h_{L_2}$	$E^h_{L_\infty}$	temps (sec)
630	14 imes 15	2.76E-3	3.33E-3	1.07E-2	2.77
2436	28 × 29	7.52E-4	9.02E-4	2.73E-3	11.3

Table: Méthode d'ordre 2

D.O.F	N	$E_{L_1}^h$	$E_{L_2}^h$	$E^h_{L_{\infty}}$	temps (sec)
600	10 × 10	2.67E-4	3.36E-4	1.21E-3	4.00
2400	20 × 20	3.43E-5	4.36E-5	1.66E-4	30.6

Table: Méthode d'ordre 3

- F. VILAR, P.-H. MAIRE AND R. ABGRALL, Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics. CAF, 2010.
- F. VILAR, Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics. CAF, 2012.
- F. VILAR, P.-H. MAIRE AND R. ABGRALL, A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total lagrangian formulation on general unstructured grids. JCP, 2014.
- F. VILAR, C.-W. SHU AND P.-H. MAIRE, *Positivity-preserving* cell-centered Lagrangian schemes for multi-material compressible flows: Form first-order to high-orders. Part I: The 1D case. JCP, 2016.
- F. VILAR, C.-W. SHU AND P.-H. MAIRE, *Positivity-preserving* cell-centered Lagrangian schemes for multi-material compressible flows: Form first-order to high-orders. Part II: The 2D case. JCP, 2016.