A posteriori local subcell correction of high-order DG schemes on unstructured grids

François Vilar ${ }^{1}$ and Rémi Abgrall ${ }^{2}$

${ }^{1}$ Institut Montpelliérain Alexander Grothendieck, Université de Montpellier
${ }^{2}$ Institut für Mathematik, Universität Zürich

October 2022

(1) Introduction
(2) DG as a subcell Finite Volume
(3) A posteriori subcell correction

4 Numerical results
(5) Conclusion

Scalar conservation law

- $\partial_{t} u(\mathbf{x}, t)+\nabla_{x} \cdot \mathbf{F}(u(\mathbf{x}, t))=0$ $(\mathbf{x}, t) \in \omega \times[0, T]$
- $u(\mathbf{x}, 0)=u_{0}(\mathbf{x})$, $\mathbf{x} \in \omega$

$(k+1)^{\text {th }}$ order semi-discretization

- $\left\{\omega_{c}\right\}_{c}$ a partition of ω, such that $\omega=\bigcup_{c} \omega_{c}$
- $u_{h}(\mathbf{x}, t)$ the numerical solution, such that $u_{h \mid \omega_{c}}=u_{h}^{c} \in \mathbb{P}^{k}\left(\omega_{c}\right)$

$$
u_{h}^{c}(\mathbf{x}, t)=\sum_{m=1}^{N_{k}} u_{m}^{c}(t) \sigma_{m}^{c}(\mathbf{x})
$$

- $\left\{\sigma_{m}^{c}\right\}_{m=1, \ldots, N_{k}}$ a basis of $\mathbb{P}^{k}\left(\omega_{c}\right)$, with $N_{k}=\frac{(k+1)(k+2)}{2}$ in 2D.

Local variational formulation on ω_{c}

- $\int_{\omega_{c}} \frac{\partial u_{h}^{c}}{\partial t} \psi \mathrm{~d} V=\int_{\omega_{c}} \mathbf{F}\left(u_{h}^{c}\right) \cdot \nabla_{x} \psi \mathrm{~d} V-\int_{\partial \omega_{c}} \psi \mathcal{F}_{n} \mathrm{~d} S, \quad \forall \psi \in \mathbb{P}^{k}\left(\omega_{c}\right)$
- $\mathcal{F}_{n}=\mathcal{F}\left(u_{h}^{c}, u_{h}^{v}, \mathbf{n}\right)$

Numerical example: solid body rotation

Figure : Rotation of composite signal: initial solution

Roughly constant number of degrees of freedom

Figure : Rotation of composite signal: initial solution

Subcell resolution of DG scheme

(c) 1st order on 5154 cells
(d) 6th order on 242 cells (5082 DoF)

Figure : Rotation of composite signal after one period: subcells mean value

Subcell resolution of DG scheme

Figure : Rotation of composite signal after one period: profiles for $y=0.75$

Admissible numerical solution

- Maximum principle / positivity preserving
- Prevent the code from crashing (for instance avoiding NaN)
- Ensure the conservation of the scheme

Spurious oscillations

- Discrete maximum principle
- Relaxing condition for smooth extrema

Accuracy

- Retain as much as possible the subcell resolution of the DG scheme
- Minimize the number of subcell solutions to recompute

Modify locally, at the subcell level, the numerical solution without impacting the solution elsewhere in the cell

F. Vilar, A Posteriori Correction of High-Order DG Scheme through Subcell Finite Volume Formulation and Flux Reconstruction. JCP, 2018.

(1) Introduction

(2) DG as a subcell Finite Volume
(3) A posteriori subcell correction
(4) Numerical results
(5) Conclusion

DG as a subcell Finite Volume

- Rewrite DG scheme as a FV-like scheme on a subgrid

Cell subdivision into N_{k} subcells

Figure : Examples of subdivision for a $\mathbb{P}^{3} \mathrm{DG}$ scheme on a triangular cell

Figure : Examples of subdivision for a polygonal cell from \mathbb{P}^{1} up to \mathbb{P}^{3}

DG schemes through residuals

$-\sum_{m=1}^{N_{k}} \frac{\mathrm{~d} u_{m}^{c}}{\mathrm{~d} t} \int_{\omega_{c}} \sigma_{m} \sigma_{p} \mathrm{~d} V=\int_{\omega_{c}} \mathbf{F}\left(u_{h}^{c}\right) \cdot \nabla_{x} \sigma_{p} \mathrm{~d} V-\int_{\partial \omega_{c}} \sigma_{p} \mathcal{F}_{n} \mathrm{~d} S, \quad \forall p \in \llbracket 1, N_{k} \rrbracket$

$$
M_{c} \frac{\mathrm{~d} U_{c}}{\mathrm{~d} t}=\Phi_{c}
$$

- $\left(U_{c}\right)_{m}=u_{m}^{c}$

Solution moments

- $\left(M_{c}\right)_{m p}=\int_{\omega_{c}} \sigma_{m} \sigma_{p} \mathrm{~d} V$

Mass matrix

- $\left(\Phi_{c}\right)_{m}=\int_{\omega_{c}} \mathbf{F}\left(u_{h}^{c}\right) \cdot \nabla_{x} \sigma_{m} \mathrm{~d} V-\int_{\partial \omega_{c}} \sigma_{m} \mathcal{F}_{n} \mathrm{~d} S$

DG residuals

Subdivision and definition

- ω_{c} is subdivided into N_{k} subcells S_{m}^{c}
- Let us define $\bar{\psi}_{m}^{c}=\frac{1}{\left|S_{m}^{c}\right|} \int_{S_{m}^{c}} \psi \mathrm{~d} V$ the subcell mean value

Submean values

- $\frac{\mathrm{d} \bar{u}_{m}^{c}}{\mathrm{~d} t}=\frac{1}{\left|S_{m}^{c}\right|} \sum_{q=1}^{N_{k}} \frac{\mathrm{~d} u_{q}^{c}}{\mathrm{~d} t} \int_{S_{m}^{c}} \sigma_{q} \mathrm{~d} V$

$$
\Longrightarrow \quad \frac{\mathrm{d} \bar{U}_{c}}{\mathrm{~d} t}=P_{c} \frac{\mathrm{~d} U_{c}}{\mathrm{~d} t}
$$

- $\left(\bar{U}_{c}\right)_{m}=\bar{u}_{m}^{c}$
- $\left(P_{c}\right)_{m p}=\frac{1}{\left|S_{m}^{c}\right|} \int_{S_{m}^{c}} \sigma_{p} \mathrm{~d} V$

Submean values
Projection matrix

$$
\Longrightarrow \quad \frac{\mathrm{d} \bar{U}_{c}}{\mathrm{~d} t}=P_{c} M_{c}^{-1} \Phi_{c}
$$

Admissibility of the cell sub-partition into subcells

- P_{c} has to be non-singular

Subcell Finite Volume: reconstructed fluxes

- Let us introduce the reconstructed fluxes such that

$$
\frac{\mathrm{d} \bar{u}_{m}^{c}}{\mathrm{~d} t}=-\frac{1}{\left|S_{m}^{c}\right|} \int_{\partial S_{m}^{c}} \widehat{F}_{n} \mathrm{~d} S
$$

- Let \mathcal{V}_{m}^{c} be the set of face neighboring subcells of S_{m}^{c}

$$
\frac{\mathrm{d} \bar{u}_{m}^{c}}{\mathrm{~d} t}=-\frac{1}{\left|S_{m}^{c}\right|} \sum_{S_{p}^{\nu} \in \mathcal{V}_{m}^{c}} \int_{F_{m p}^{c}} \widehat{F}_{n} \mathrm{~d} S
$$

- We impose that on the boundary of cell ω_{c}

$$
\widehat{F}_{\widehat{V \mid O}_{\omega_{c}}}=\mathcal{F}_{n}
$$

- Then, if $\widetilde{\mathcal{V}_{m}^{c}}$ stands for the set of face neighboring subcells inside ω_{c}

$$
\frac{\mathrm{d} \bar{u}_{m}^{c}}{\mathrm{~d} t}=-\frac{1}{\left|S_{m}^{c}\right|}\left(\sum_{S_{\rho}^{c} \in \widetilde{\mathcal{V}}_{m}^{c}} \int_{F_{m p}^{c}} \widehat{F}_{n} \mathrm{~d} S+\int_{\partial S_{m}^{c} \cap \partial \omega_{c}} \mathcal{F}_{n} \mathrm{~d} S\right)
$$

Subcell Finite Volume: reconstructed fluxes

- Taking two subcells S_{m}^{c} and S_{p}^{v}, the orientation face function $\varepsilon_{m p}^{c}$ writes

$$
\varepsilon_{m p}^{c}= \begin{cases}1 & \text { if face } f_{m p}^{c} \text { is direct or if } f_{m p}^{c} \subset \partial \omega_{c} \\ -1 & \text { if face } f_{m p}^{c} \text { is indirect } \\ 0 & \text { if } S_{p}^{v} \notin \mathcal{V}_{m}^{c}\end{cases}
$$

- $\int_{f_{m p}^{c}} \widehat{F}_{n} \mathrm{~d} S=\varepsilon_{m p}^{c} \widehat{F_{m p}}$
face integrated reconstructed flux

$$
\frac{\mathrm{d} \bar{u}_{m}^{c}}{\mathrm{~d} t}=-\frac{1}{\left|S_{m}^{c}\right|}\left(\sum_{S_{p}^{c} \in \widehat{\mathcal{V}}_{m}^{c}} \varepsilon_{m p}^{c} \widehat{F_{m p}}+\int_{\partial S_{m}^{c} \cap \partial \omega_{c}} \mathcal{F}_{n} \mathrm{~d} S\right)
$$

- $\left(B_{c}\right)_{m}=\int_{\partial S_{m}^{c} \cap \partial \omega_{c}}^{\mathcal{F}_{n}} \underset{ }{d}$

Cell boundary contribution

- $\left(A_{c}\right)_{m p}=\varepsilon_{m p}^{c}$

Adjacency matrix

- $D_{c}=\operatorname{diag}\left(\left|S_{1}^{c}\right|, \ldots,\left|S_{N_{k}}^{c}\right|\right)$

Subcells volume matrix

Subcell Finite Volume: reconstructed fluxes

- Let \widehat{F}_{c} be the vector containing all the interior faces reconstructed fluxes
- The subcell mean values governing equations yield the following system

$$
-A_{c} \widehat{F}_{c}=D_{c} \frac{\mathrm{~d} \bar{U}_{c}}{\mathrm{~d} t}+B_{c}
$$

Graph Laplacian technique

- $A_{c} \in \mathcal{M}_{N_{k} \times N_{f}^{c}} \quad$ with N_{f}^{c} the number of interior faces
- $A_{c}^{\dagger} \mathbf{1}=\mathbf{0} \quad$ where $\mathbf{1}=(1, \ldots, 1)^{\mathrm{t}} \in \mathbb{R}^{N_{k}}$

R R. Abgrall, Some Remarks about Conservation for Residual Distribution Schemes. Methods Appl. Math., 18:327-351, 2018.

- Let \mathcal{L}_{c}^{-1} be the inverse of $L_{c}=A_{c} A_{c}^{t}$ on the orthogonal of its kernel

$$
\mathcal{L}_{c}^{-1}=\left(L_{c}+\lambda \Pi\right)^{-1}-\frac{1}{\lambda} \Pi
$$

- $\Pi=\frac{1}{N_{k}}(\mathbf{1} \otimes \mathbf{1}) \in \mathcal{M}_{N_{k}}$

Graph Laplacian technique

- Finally, we obtain the following definition of the reconstructed fluxes

$$
\widehat{F_{c}}=-A_{c}^{\mathrm{t}} \mathcal{L}_{c}^{-1}\left(D_{c} P_{c} M_{c}^{-1} \Phi_{c}+B_{c}\right)
$$

remark

- The only terms depending on the time are Φ_{c} and B_{c}

Back to the DG scheme

- The polynomial solution is defined through reconstructed fluxes as follows

$$
\frac{\mathrm{d} U_{c}}{\mathrm{~d} t}=-P_{c}^{-1} D_{c}^{-1}\left(A_{c} \widehat{F}_{c}+B_{c}\right)
$$

Question

- Is the reconstructed flux $\widehat{F_{c}}$ close to the interior flux $\boldsymbol{F}\left(u_{h}^{c}\right)$?

Local variational formulation

- $\int_{\omega_{c}} \frac{\partial u_{h}^{c}}{\partial t} \psi \mathrm{~d} V=\int_{\omega_{c}} \mathbf{F}\left(u_{h}^{c}\right) \cdot \nabla_{x} \psi \mathrm{~d} V-\int_{\partial \omega_{c}} \psi \mathcal{F}_{n} \mathrm{~d} S$,

$$
\forall \psi \in \mathbb{P}^{k}\left(\omega_{c}\right)
$$

- Substitute $\boldsymbol{F}\left(u_{h}^{c}\right)$ with $\boldsymbol{F}_{h}^{c} \in\left(\mathbb{P}^{k+1}\left(\omega_{c}\right)\right)^{2} \quad$ (collocated or L_{2} projection)
- $\int_{\omega_{c}} \frac{\partial u_{h}^{c}}{\partial t} \psi \mathrm{~d} V=-\int_{\omega_{c}} \psi \nabla_{x} \cdot \boldsymbol{F}_{h}^{c} \mathrm{~d} V+\int_{\partial \omega_{c}} \psi\left(\boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n}-\mathcal{F}_{n}\right) \mathrm{d} S, \quad \forall \psi \in \mathbb{P}^{k}\left(\omega_{c}\right)$

Subresolution basis functions

- Let us introduce the N_{k} basis functions $\left\{\phi_{m}\right\}_{m}$ such that $\forall \psi \in \mathbb{P}^{k}\left(\omega_{c}\right)$

$$
\int_{\omega_{c}} \phi_{m} \psi \mathrm{~d} V=\int_{S_{m}^{c}} \psi \mathrm{~d} V, \quad \forall m=1, \ldots, N_{k}
$$

- $\sum_{m=1}^{N_{k}} \phi_{m}(\boldsymbol{x})=1$

These particular functions can be seen as the L_{2} projection of the indicator functions $\mathbb{1}_{m}(\boldsymbol{x})$ onto $\mathbb{P}^{k}\left(\omega_{c}\right)$

Subcell Finite Volume scheme

$$
\cdot \int_{\omega_{c}} \frac{\partial u_{h}^{c}}{\partial t} \phi_{m} \mathrm{~d} V=-\int_{\omega_{c}} \phi_{m} \nabla_{X} \cdot \boldsymbol{F}_{h}^{c} \mathrm{~d} V+\int_{\partial \omega_{c}} \phi_{m}\left(\boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n}-\mathcal{F}_{n}\right) \mathrm{d} S
$$

$$
\text { - }\left|S_{m}^{c}\right| \frac{\mathrm{d} \bar{u}_{m}^{c}}{\mathrm{~d} t}=-\int_{S_{m}^{c}} \nabla_{x} \cdot \boldsymbol{F}_{h}^{c} \mathrm{~d} V+\int_{\partial \omega_{c}} \phi_{m}\left(\boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n}-\mathcal{F}_{n}\right) \mathrm{d} S
$$

$$
-\frac{\mathrm{d} \bar{u}_{m}^{c}}{\mathrm{~d} t}=-\frac{1}{\left|S_{m}^{c}\right|}\left(\int_{\partial S_{m}^{c}} \boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n} \mathrm{~d} S-\int_{\partial \omega_{c}} \phi_{m}\left(\boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n}-\mathcal{F}_{n}\right) \mathrm{d} S\right)
$$

$$
-\frac{\mathrm{d} \bar{u}_{m}^{c}}{\mathrm{~d} t}=-\frac{1}{\left|S_{m}^{c}\right|} \int_{\partial S_{m}^{c}} \widehat{F}_{n} \mathrm{~d} S
$$

Reconstructed Fluxes

- Finally, we get that

$$
\int_{\partial S_{m}^{c}} \widehat{F}_{n} \mathrm{~d} \boldsymbol{S}=\int_{\partial S_{m}^{c}} \boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n} \mathrm{~d} \boldsymbol{S}-\int_{\partial \omega_{c}} \phi_{m}\left(\boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n}-\mathcal{F}_{n}\right) \mathrm{d} \boldsymbol{S}
$$

Reconstructed fluxes

- As we impose that $\widehat{F}_{\left.n\right|_{\partial \omega_{c}}}=\mathcal{F}_{n}$, this last expression rewrites

$$
\begin{aligned}
& \int_{\partial S_{m}^{c} \backslash \partial \omega_{c}} \widehat{F_{n}} \mathrm{~d} S=\int_{\partial S_{m}^{c} \backslash \partial \omega_{c}} \boldsymbol{F}_{h}^{c}, \boldsymbol{n} \mathrm{~d} S-\int_{\partial \omega_{c}} \widetilde{\phi_{m}}\left(\boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n}-\mathcal{F}_{n}\right) \mathrm{d} S \\
&-\widetilde{\phi_{m}}= \begin{cases}\phi_{m} & \text { if } \boldsymbol{x} \in \partial \omega_{c} \backslash \partial S_{m}^{c} \\
\phi_{m}-1 & \text { if } \boldsymbol{x} \in \partial \omega_{c} \bigcap \partial S_{m}^{c}\end{cases} \\
& \bullet \quad \int_{f_{m p}^{c}} \widehat{F_{n}} \mathrm{~d} S=\varepsilon_{m p}^{c} \widehat{F_{m p}} \quad \text { and } \quad \int_{f_{m p}^{c}} \boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n} \mathrm{~d} S=\varepsilon_{m p}^{c} F_{m p}
\end{aligned}
$$

- Then, if F_{c} is the vector containing all the interior faces fluxes, one gets

$$
A_{c} \widehat{F_{c}}=A_{c} F_{c}-G_{c}
$$

- $\left(G_{c}\right)_{m}=\int_{\partial \omega_{c}} \widetilde{\phi_{m}}\left(\boldsymbol{F}_{h}^{c}, \boldsymbol{n}-\mathcal{F}_{n}\right) \mathrm{d} \boldsymbol{S}$

Boundary contribution

Reconstructed fluxes through interior fluxes

- Making use of the same graph Laplacian technique, we finally obtain

$$
\widehat{\widehat{F}_{c}}=F_{c}-A_{c}^{\mathrm{t}} \mathcal{L}_{c}^{-1} G_{c}
$$

- We can rewrite this expression as

$$
\widehat{F}_{c}=F_{c}-\mathcal{G}\left(\boldsymbol{F}_{h}^{c} \cdot \boldsymbol{n}-\mathcal{F}_{n}\right)
$$

where $\mathcal{G}($.$) is a correction function taking into account the jump$ between the polynomial flux and the numerical flux on the cell boundary

Remark

- Different choice in the correction term $\mathcal{G}($.$) leads to different schemes$
- For instance, $\mathcal{G}()=$.0 leads to the spectral volume scheme of Z.J. Wang

(9) Introduction

(2) DG as a subcell Finite Volume
(3) A posteriori subcell correction
(4) Numerical results
(5) Conclusion

RKDG scheme

- SSP Runge-Kutta: convex combinations of first-order forward Euler
- For sake of clarity, we focus on forward Euler time stepping

Projection on subcells of RKDG solution

$u_{h}^{c, n}(x)=\sum_{m=1}^{N_{k}} u_{m}^{c, n} \sigma_{m}(x)$

- $u_{h}^{c, n}$ is uniquely defined by its N_{k} submean values $\bar{u}_{m}^{c, n}$
- Recalling the definition of the projection matrix $\left(P_{c}\right)_{m p}=\frac{1}{\left|S_{m}^{c}\right|} \int_{S_{m}^{c}} \sigma_{p} \mathrm{~d} V$,

$$
\Longrightarrow \quad P_{c}\left(\begin{array}{c}
u_{1}^{c, n} \\
\vdots \\
u_{N_{k}, n}^{c, n}
\end{array}\right)=\left(\begin{array}{c}
\bar{u}_{1}^{c, n} \\
\vdots \\
\bar{u}_{N_{k}, n}^{c, n}
\end{array}\right)
$$

Set up

- We assume that, for each cell, the $\left\{\bar{u}_{m}^{c, n}\right\}_{m}$ are admissible
- Compute a candidate solution u_{h}^{n+1} from u_{h}^{n} through uncorrected DG
- For each subcell, check if the submean values $\left\{\bar{u}_{m}^{c, n+1}\right\}_{m}$ are OK

Physical admissibility detection (PAD)

- Check if $\bar{u}_{m}^{c, n+1}$ lies in an convex physical admissible set (maximum principle for SCL, positivity of the pressure and density for Euler, ...)
- Check if there is any NaN values

Numerical admissibility detection (NAD)

- Discrete maximum principle DMP on submean values:

$$
\min _{v \in \mathcal{V}\left(S_{m}^{c}\right)}\left(\bar{u}_{v}^{n}\right) \leq \bar{u}_{m}^{c, n+1} \leq \max _{v \in \mathcal{V}\left(S_{m}^{c}\right)}\left(\bar{u}_{v}^{n}\right)
$$

- $\mathcal{V}\left(S_{m}^{c}\right)$ set of neighboring subcells of S_{m}^{c}, including subcell S_{m}^{c}
- This criterion needs to be relaxed to preserve smooth extrema

Fundamental principle

- On non-admissible subcell boundaries

Substitute the reconstructed fluxes by more robust numerical fluxes

- Recompute the non-admissible subcells, and their first neighbors

Examples of correction schemes

- $1^{\text {st }}$-order Finite Volume scheme
- $2^{\text {nd }}-$ order MUSCL scheme
- (W)ENO methods
- ...

Corrected reconstructed flux

Figure : Original correction of the DG reconstructed flux

Flowchart

(1) Compute the uncorrected DG candidate solution $u_{h}^{c, n+1}$
(2) Project $u_{h}^{c, n+1}$ to get the submean values $\bar{u}_{m}^{c, n+1}$
(3) Check $\bar{u}_{m}^{c, n+1}$ through the troubled zone detection plus relaxation
(9) If $\bar{u}_{m}^{c, n+1}$ is admissible, go further in time. Otherwise, if S_{m}^{c} or $S_{p}^{v} \in \mathcal{V}_{m}^{c}$ is either marked

$$
\widetilde{F_{m p}}=\varepsilon_{m p}^{c} I_{m p}^{c} \mathcal{F}\left(\bar{u}_{m}^{c, n}, \bar{u}_{p}^{v, n}, \boldsymbol{n}_{m p}\right)
$$

(6) Through the corrected reconstructed flux, recompute the submean values for tagged subcells and their first neighbors
(6) Return to (3)

Conclusion

- The correction only affects the DG solution at the subcell scale
- The corrected scheme is conservative at the subcell level
- In practice, few submean values need to be recomputed

Remarks

- For non-linear problems, using very high-order schemes and coarse meshes, the solution may remain a bit oscillatory at the subcell level
- This is why we were previously considering, for $k \geq 3$, that if a subcell is marked as bad then we also mark its first neighboring subcells
F. Vilar, A Posteriori Correction of High-Order DG Scheme through Subcell Finite Volume Formulation and Flux Reconstruction. JCP, 2018.

New correction principle

To avoid too much discrepancy between corrected and reconstructed fluxes

- Wider subcell set to be corrected
- Convex combination between $1^{\text {st }}$-order flux and the reconstructed flux

$$
\widetilde{F_{m p}}=\theta_{m p} \varepsilon_{m p}^{c} I_{m p}^{c} \mathcal{F}\left(\bar{u}_{m}^{c, n}, \bar{u}_{p}^{v, n}, \boldsymbol{n}_{m p}\right)+\left(1-\theta_{m p}\right) \widehat{F_{m p}},
$$

where $\theta_{m p}$ is a function of the distance to the non-admissible subcell

Corrected reconstructed flux

Figure : New correction of the DG reconstructed flux

Burgers equation with $u_{0}(x, y)=\sin (2 \pi(x+y))$

Figure : Entropic weak solution: apparition of stationary shocks

6th-order scheme on a 576 cells grid

(a) Original correction

(b) New correction

Figure : Comparison between original and new correction procedure: corrected subcells

6th-order scheme on a 576 cells grid - zoom in $[0.65,0.9]^{2}$

(a) Original correction

(b) New correction

Figure : Comparison between original and new correction procedure: corrected subcells

6th-order scheme on a 576 cells grid

(a) Original correction

(b) New correction

Figure : Comparison between original and new correction procedure: subcell mean values

6th-order scheme on a 576 cells grid

Figure : Comparison between original and new correction procedure: submean values versus $(x+y-1)$ coordinate

(1) Introduction

(2) DG as a subcell Finite Volume
(3) A posteriori subcell correction

4 Numerical results
(5) Conclusion

(9) Introduction

(2) DG as a subcell Finite Volume
(3) A posteriori subcell correction
(4) Numerical results

- 2D linear problems
- 2D non-linear problems

(5) Conclusion

2D Linear advection

- $\partial_{t} u(\boldsymbol{x}, t)+\boldsymbol{A} \cdot \nabla_{x} u(\boldsymbol{x}, t)=0 \quad$ with $\quad \boldsymbol{A}$ transport velocity

Linear advection of a crenel signal $\quad \boldsymbol{A}=(1,1)^{\mathrm{t}}$

(b) Corrected subcells

Figure : 6th-order APLSC-DG on a 576 cells mesh after one period

Linear advection equation of a crenel signal

Figure : 6th-order solutions for the crenel advection case on 576 cells: submean values versus $(x+y-1)$ coordinate

Influence of the subdivision

(a) Equidistant boundary points

(c) Equidistant boundary points

(b) Gauss-Lobatto boundary points

(d) \mathbb{P}^{3} Lagrangian mid-points

Figure : Examples of subdivisions for a triangular cell and a \mathbb{P}^{3} DG scheme

Linear advection equation of a crenel signal
 $\boldsymbol{A}=(1,1)^{\mathrm{t}}$

(a) Uniform structured subdivision

(b) Non-uniform structured subdivision

Figure : 4th-order DG solutions for the crenel signal advection on 576 cells after five periods: structured subdivision

Linear advection equation of a crenel signal
 $\boldsymbol{A}=(1,1)^{\mathrm{t}}$

(a) Uniform polygonal subdivision

(b) Non-uniform polygonal subdivision

Figure : 4th-order DG solutions for the crenel signal advection on 576 cells after five periods: polygonal subdivision

Linear advection equation of a crenel signal

Figure : 4th-order DG solutions for the crenel signal advection on 576 cells using different cell subdivisions: submean values versus $(x+y-1)$ coordinate

Linear advection equation of a crenel signal

(a) Uniform structured subdivision

(b) Non-uniform structured subdivision

Figure : 4th-order APLSC-DG solutions for the crenel signal advection on 576 cells after five periods: structured subdivision

Linear advection equation of a crenel signal
 $\boldsymbol{A}=(1,1)^{t}$

(a) Uniform polygonal subdivision

(b) Non-uniform polygonal subdivision

Figure : 4th-order APLSC-DG solutions for the crenel signal advection on 576 cells after five periods: polygonal subdivision

Linear advection equation of a crenel signal

Figure : 4th-order APLSC-DG solutions for the crenel signal advection on 576 cells using different cell subdivisions: submean values versus $(x+y-1)$ coordinate

2D solid body rotation

> - $\partial_{t} u(\boldsymbol{x}, t)+\boldsymbol{A}(\boldsymbol{x}) \cdot \nabla_{x} u(\boldsymbol{x}, t)=0 \quad$ with $\quad \boldsymbol{A}(\boldsymbol{x})=(0.5-y, x-0.5)^{\mathrm{t}}$ - $u(\boldsymbol{x}, 0)=u_{0}(\boldsymbol{x})$

Composite signal rotation: 6th-order APLSC-DG on 576 cells

(a) Solution map

(b) Corrected subcells

Rotation of a composite signal after 1 period

(a) $y=0.25$

(b) $x=0.25$

Figure : 6th-order APLSC-DG solution for the rigid rotation case on 576 cells after one full rotation: solution profiles

Rotation of a composite signal after 5 periods

(a) Uniform structured subdivision
(b) Non-uniform structured subdivision

Figure : 4th-order APLSC-DG solutions for the rigid rotation case on 576 cells after five full rotations: structured subdivision

Rotation of a composite signal after 5 periods

(a) Uniform polygonal subdivision

(b) Non-uniform polygonal subdivision

Figure : 4th-order APLSC-DG solutions for the rigid rotation case on 576 cells after five full rotations: polygonal subdivision

Rotation of a composite signal after 5 periods

(a) $y=0.25$

(b) $x=0.25$

Figure : 4th-order APLSC-DG solutions for the rigid rotation case on 576 cells after five full rotations: solution profiles

(1) Introduction

(2) DG as a subcell Finite Volume
(3) A posteriori subcell correction
(4) Numerical results

- 2D linear problems
- 2D non-linear problems

2D non-linear Burgers equation

- $\partial_{t} u(\boldsymbol{x}, t)+\nabla_{x} \cdot \boldsymbol{F}(u(\boldsymbol{x}, t))=\mathbf{0}$
with $\quad F(u)=\frac{1}{2}\left(u^{2}, u^{2}\right)^{t}$
- $u(\boldsymbol{x}, 0)=u_{0}(\boldsymbol{x})$

Burgers equation with $u_{0}(x, y)=\sin (2 \pi(x+y))$

(a) Solution map

(b) Solution profile

Figure : 6th-order uncorrected DG on a 576 cells mesh at $t=0.5$

Burgers equation with $u_{0}(x, y)=\sin (2 \pi(x+y))$

Figure : 6th-order APLSC-DG on a 576 cells mesh at $t=0.5$

Burgers equation with $u_{0}(x, y)=\sin (2 \pi(x+y))$

Figure : 6th-order uncorrected DG on a 576 cells mesh at $t=0.5$: submean values versus $(x+y-1)$ coordinate

Burgers equation with $u_{0}(x, y)=\sin (2 \pi(x+y))$

(a) Uniform structured subdivision

(b) Non-uniform structured subdivision

Figure : 4th-order APLSC-DG solutions for 2D Burgers equation on 242 cells at $t=0.5$: structured subdivision

Burgers equation with $u_{0}(x, y)=\sin (2 \pi(x+y))$

(a) Uniform polygonal subdivision

(b) Non-uniform polygonal subdivision

Figure : 4th-order APLSC-DG solutions for 2D Burgers equation on 242 cells at $t=0.5$: polygonal subdivision

Burgers equation with $u_{0}(x, y)=\sin (2 \pi(x+y))$

Figure : 4th-order APLSC-DG solutions for 2D Burgers equation on 242 cells at $t=0.5$: submean values versus $(x+y-1)$ coordinate

2D Kurganov, Petrova, Popov (KPP) non-convex flux equation

- $\partial_{t} u(\boldsymbol{x}, t)+\nabla_{x} \cdot \boldsymbol{F}(u(\boldsymbol{x}, t))=\mathbf{0} \quad$ with $\quad \boldsymbol{F}(u)=(\sin u, \cos u)^{\mathrm{t}}$
- $u(\boldsymbol{x}, 0)=u_{0}(\boldsymbol{x})$

KPP non-convex flux problem

(a) At time $t=0$

(b) At time $t=1$

Figure : 6th-order uncorrected DG solution on a 1054 cells mesh

KPP non－convex flux problem

Figure ：6th－order APLSC－DG solution on a 1054 cells mesh

KPP non-convex flux problem

Figure : 3rd-order APLSC-DG solution on a 6670 cells mesh

KPP non-convex flux problem

(a) Structured subdivision

(b) Voronoi-type subdivision

Figure : 4th-order APLSC-DG solution on a 1054 cells mesh: subdivision comparison

2D non-linear Euler compressible gas dynamics equations

- $\partial_{t} \boldsymbol{V}+\nabla_{X} \cdot \boldsymbol{F}(\boldsymbol{V})=\mathbf{0}$
- $\boldsymbol{V}=\left(\begin{array}{l}\rho \\ \boldsymbol{q} \\ E\end{array}\right)$
conservative variables
- $\boldsymbol{F}(\boldsymbol{V})=\left(\begin{array}{c}\boldsymbol{q} \\ \frac{\boldsymbol{q} \otimes \boldsymbol{q}}{\rho}+p I_{d} \\ (E+p) \frac{\boldsymbol{q}}{\rho}\end{array}\right)$
flux function
- $p:=p(\boldsymbol{V})=(\gamma-1)\left(E-\frac{1}{2} \frac{\|\boldsymbol{q}\|^{2}}{\rho}\right)$
equation of state

APLSC-DG scheme property

- Positivity of the density and internal energy, at the subcell scale

Sod shock tube problem in cylindrical geometry

(a) Density map

(b) Corrected subcells

Figure : 6th-order APLSC-DG solution on a 230 cells mesh

Sod shock tube problem in cylindrical geometry

Figure : 6th-order APLSC-DG solution on a 230 cells: density submean values

Sedov point blast problem in cylindrical geometry

Figure : 6th-order APLSC-DG on a 271 cells mesh at $t=1$

A Mach 3 wind tunnel with a step

Figure : 6th-order APLSC-DG solution for the facing step problem on 680 cells at $t=4$: submean density map

2D non-linear shallow water equations - prebalanced formulation

- $\partial_{t} \boldsymbol{V}+\nabla_{x} \cdot \boldsymbol{F}(\boldsymbol{V}, b)=\boldsymbol{B}\left(\boldsymbol{V}, \nabla_{x} b\right)$
- $\boldsymbol{V}=\binom{\eta}{\boldsymbol{q}}$
- $\boldsymbol{B}\left(\boldsymbol{V}, \partial_{x} b\right)=\binom{0}{-g \eta \nabla_{x} b}$
source term

- $\boldsymbol{F}(\boldsymbol{V}, b)=\binom{\boldsymbol{q}}{\frac{\boldsymbol{q} \otimes \boldsymbol{q}}{\eta-b}+\frac{1}{2} g\left(\eta^{2}-2 \eta b\right) I_{d}}$

flux function

APLSC-DG scheme properties

- Positivity-preservation of the water height $H=\eta-b$, at the subcell scale
- Well-balancing property, at the subcell scale

Well-balancing property

Figure : 3rd-order APLSC-DG on a 5000 cells at $t=50$: free surface elevation

Dam break problem in cylindrical geometry

(a) Solution map

(b) Solution profile

Figure : 3rd-order APLSC-DG on a 2676 cells mesh at $t=0.045$: free surface elevation

Rock-wave interaction

Figure : 3rd-order APLSC-DG on a 7000 cells mesh

(1) Introduction

(2) DG as a subcell Finite Volume
(3) A posteriori subcell correction
(4) Numerical results
(5) Conclusion

A Posteriori Local Subcell Correction (APLSC) technique

- Reformulate DG schemes as subgrid FV-like schemes
- Design an original local subcell correction:
- preserving the scheme conservation at the subcell scale
- preserving the very accurate subcell resolution of DG schemes
- ensuring a maximum or positivity preserving principle at the subcell scale
- reducing significantly the apparition of spurious oscillations
- limiting the correction computational effort by not recomputing solution in admissible subcell not lying in the vicinity of a troubled subcell

Applications

- Scalar conservation laws (1D and 2D)
- Euler compressible gas dynamics system (1D and 2D)
- Non-linear shallow water (NSW) system (1D and 2D) Ali Haidar
- NSW interactions with a floating object in the arbitrary-Lagrangian-Eulerian (ALE) framework (1D)

Ali Haidar

Ongoing work

- Application to 2D total Lagrangian hydrodynamics on curvilinear grids
- Maximum principle DG scheme through subcell reconstructed FCT

Future work

- DoF based adaptive DG scheme through subcell Finite Volume formulation in collaboration with Raphaël Loubère
- Application to 2D hydrodynamics and solid dynamics in the ALE framework in collaboration with Walter Boscheri
- 2D NSW interactions with a floating object in the ALE framework in collaboration with Fabien Marche

Articles on this topic

F. Vilar, A Posteriori Correction of High-Order DG Scheme through Subcell Finite Volume Formulation and Flux Reconstruction. JCP, 387:245-279, 2018.
(i. Haidar, F. Marche and F. Vilar, A posteriori Finite-Volume local subcell correction of high-order discontinuous Galerkin schemes for the nonlinear shallow-water equations. JCP, 452:110902, 2022.
(A. Haidar, F. Marche and F. Vilar, Nonlinear shallow water interactions with a partially immersed object: a robust high-order DG-ALE formulation. JCP, Article under revision.

R A. Haidar, F. Marche and F. Vilar, Numerical approximation of nonlinear shallow-water interacting with a floating object.

Article in preparation.

F. Vilar and R. Abgrall, A posteriori local subcell correction of DG schemes through Finite Volume reformulation on unstructured grids. Article finished, yet to be submitted!!

Articles on this topic

F. Vilar, A Posteriori Correction of High-Order DG Scheme through Subcell Finite Volume Formulation and Flux Reconstruction. JCP, 387:245-279, 2018.
(i. Haidar, F. Marche and F. Vilar, A posteriori Finite-Volume local subcell correction of high-order discontinuous Galerkin schemes for the nonlinear shallow-water equations. JCP, 452:110902, 2022.
(A. Haidar, F. Marche and F. Vilar, Nonlinear shallow water interactions with a partially immersed object: a robust high-order DG-ALE formulation. JCP, Article under revision.

R A. Haidar, F. Marche and F. Vilar, Numerical approximation of nonlinear shallow-water interacting with a floating object.

Article in preparation.

F. Vilar and R. Abgrall, A posteriori local subcell correction of DG schemes through Finite Volume reformulation on unstructured grids. Article finished, yet to be submitted!!

NAD: neighboring subcells set

(a) 4th-order, polygonal subdivision

(b) 6th-order, structured subdivision

Figure : Neighboring subcells set for the numerical admissibility criterion

NAD: neighboring subcells set

(a) 4th-order, polygonal subdivision

(b) 6th-order, structured subdivision

Figure : Neighboring subcells set for the numerical admissibility criterion

Cell subdivision: condition number of the projection matrix P_{c}

	\mathbb{P}^{0}	\mathbb{P}^{1}	\mathbb{P}^{2}	\mathbb{P}^{3}
Unif. struct. subdiv.	1	4	10.91	31.75
Non-unif. struct. subdiv.	1	4	9.52	29.28
Unif. polyg. subdiv.	1	2.87	8.73	27.89
Non-unif. polyg. subdiv.	1	2.87	8.19	26.94

Table: Projection matrix condition number for different orders and subdivisions

