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Introduction Discontinuous Galerkin scheme

Scalar conservation law
@ Jru(x,t)+ Vx.F(u(x,t) =0, (x,t) € wx[0,T]

@ u(x,0) = up(x), Xecw

(k + 1) order semi-discretization

@ {wc}c a partition of w, suchthat w=J,we
® up(x,t) the numerical solution, such that  up,, = US € P¥(w)

(X, 1) = D U () o (x)

® {08} me1. N, abasisof P¥(wg), with Ny = CHKE2) jq op,

Local variational formulation on w,

/ S vaV= | FUp). Vi dV — | o Fods, Vih € PH(wo)

Owe

o Fn=F (ug, ul,n) numerical flux
“

i = = SaR=
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Introduction Discontinuous Galerkin scheme

Numerical example: solid body rotation
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Figure : Rotation of composite signal: initial solution
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Introduction Discontinuous Galerkin scheme

Roughly constant number of degrees of freedom
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(a) 1st order on 5154 cells (b) 6th order on 242 cells (5082 DoF)

Figure : Rotation of composite signal: initial solution
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Introduction Discontinuous Galerkin scheme

Subcell resolution of DG scheme
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(d) 6th order on 242 cells (5082 DoF)

(c) 1st order on 5154 cells
Figure : Rotation of composite signal after one period: subcells mean value
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Subcell resolution of DG scheme

t2 ‘ exact solution
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Introduction Objectives

Admissible numerical solution

@ Maximum principle / positivity preserving
@ Prevent the code from crashing (for instance avoiding NaN)
@ Ensure the conservation of the scheme

Spurious oscillations

@ Discrete maximum principle
@ Relaxing condition for smooth extrema

Accuracy

@ Retain as much as possible the subcell resolution of the DG scheme
@ Minimize the number of subcell solutions to recompute

Modify locally, at the subcell level, the numerical solution without
impacting the solution elsewhere in the cell

[3 F. VILAR, A Posteriori Correction of High-Order DG Scheme through
Subcell Finite Volume Formulation and Flux Reconstruction. JCP, 2018.
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DG as a subcell Finite Volume Cell subdivi

e DG as a subcell Finite Volume
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DG as a subcell Finite Volume Cell subdivision

DG as a subcell Finite Volume
@ Rewrite DG scheme as a FV-like scheme on a subgrid

Cell subdivision into Nj subcells

Figure : Examples of subdivision for a polygonal cell from P' up to P®
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DG schemes through residuals

Nk
due
° E (;;m /O'mO'pdV:/ F(uﬁ).vxapdV—/ op FndS, Vpe [1,N]
m=1 We We

Owe
dU,
— TG
® (Uc)m = uf, Solution moments
@ (Mc)mp :/ omopdV Mass matrix
@ (Ye)m= [ F(Uf).VxomdV — [ om FpdS DG residuals
We Owe

Subdivision and definition

@ w. is subdivided into Ny subcells S§,
1

1Skl Jsg,

@ Let us define @f,, = 1 dV the subcell mean value

— —_ = — SaReut
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DG as a subcell Finite Volume Reconstructed fluxes through residuals

Submean values

— Ni @
duy, 1 duq/

° = dv
at S 2. gt .

m q=1
dU, d U,
— —
a ear
® (Uo)m=T1¢, Submean values
1 o .
@ (Pc)mp 5ol /s opdV Projection matrix

Admissibility of the cell sub-partition into subcells
@ P; has to be non-singular
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DG as a subcell Finite Volume Reconstructed fluxes through residuals

Subcell Finite Volume: reconstructed fluxes

@ Let us introduce the reconstructed fluxes such that

dz, 1 —
— -1 [ Fuas
dt 1SS| Jose "

@ Let VS be the set of face neighboring subcells of S&,

dus, 1 —~
dt |SS)| 2 /, "

@ We impose that on the boundary of cell w,

—

Fn :Fn

Iawc

@ Then, if ])Tnc stands for the set of face neighboring subcells inside w,

4T, 1 / =
- FndS + | FndS
dt 1S Z\, o, ! 085NBw,
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DG as a subcell Finite Volume Reconstructed fluxes through residuals

Subcell Finite Volume: reconstructed fluxes

@ Taking two subcells S¢, and Sp, the orientation face function 7, writes
1 if face fg, is direct or if 17, C duwe,
Emp=14 —1 if face fg, is indirect,
0 it Sf ¢ V5.
° ; F,dS = G I?m\p face integrated reconstructed flux
mp
—dvt’:"—f L Zecl?\+ FndS
dt B DL PYy
S5V,
@ (Bo)m= FndS Cell boundary contribution
858 Ndwe
@ (Ac)mp = mp Adjacency matrix
o D, = diag (|s10|, . |S,CVK|> Subcells volume matrix
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DG as a subcell Finite Volume Reconstructed fluxes through residuals

Subcell Finite Volume: reconstructed fluxes

@ Let 7—'; be the vector containing all the interior faces reconstructed fluxes
@ The subcell mean values governing equations yield the following system

= dU
—Ac Fe = De dtc

Graph Laplacian technique

@ A € My, xne with Nf the number of interior faces
0o Al1=0 where 1=(1,...,1) ¢ RM

[3 R. ABGRALL, Some Remarks about Conservation for Residual
Distribution Schemes. Methods Appl. Math., 18:327-351, 2018.

Qo Let £g1 be the inverse of L, = A; A% on the orthogonal of its kernel

+ B

ﬁ;‘:(LcHn)*L%n VA #0

oI‘I:Nik(1®1)eMNk
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Graph Laplacian technique
@ Finally, we obtain the following definition of the reconstructed fluxes

Fo= —ALcg (DC P M o, + BC)

@ The only terms depending on the time are ¢, and B;

Back to the DG scheme

@ The polynomial solution is defined through reconstructed fluxes as follows

d UC
dt

— _p;ip;t (AC/F\C + Bc)

@ Is the reconstructed flux F, close to the interior flux F(ug) ?

— = = = Sakeut
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DG as a subcell Finite Volume Reconstructed fluxes through interior fluxes

Local variational formulation

/8u’7de:/ F(uf).VxpdV — [ o FpdS, Vi € PK(we)

Owe

@ Substitute F(uf) with Ff e (PA1(wc) 2 (collocated or L, projection)
h

o/ 8al;h¢dv—*/wvx.dev+ W (Fhen—Fy) dS, Vo € P¥(wo)
e we Owe

Subresolution basis functions
@ Let us introduce the N basis functions {¢m}m such that Vi € PX(w,)

We

¢m1pdV:/ vdV,  Ym=1,...,Ng,
S5

0 D dm(x)=1

m=1

These particular functions can be seen as the [, projection of
the indicator functions 1,(x) onto P(w)

= g =
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DG as a subcell Finite Volume Reconstructed fluxes through interior fluxes

Subcell Finite Volume scheme

ous
o/ o omaV == [ 60V Fiavt [ on (Ff.n-F;) as
d*C
° |S¢ (;Jtm =— [ Vx.FidV+ | ¢m (F.n—F,)dS
Sa Owe
du® 1
o 4tm_ _ 1 / Fo.ndS— [ om (FS.n—F,) dS
dt ISkl \Jase, Bue
—C
dUpy _ i F,dS Subcell Finite Volume
dt 1Sal Jose,

v

Reconstructed Fluxes
@ Finally, we get that

/ FrdS= | F2.ndS— [ ¢m (FS.n—F,) dS
oS, aSh, Owe
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DG as a subcell Finite Volume Reconstructed fluxes through interior fluxes

Reconstructed fluxes

@ As we impose that T:E‘M = Fn, this last expression rewrites

/ FndS = Fi.ndS— | ¢m (FS.n—F,) dS
985\ Owe 985\ Owe Owe
— ®ém if X € dwe\ 0S5,
° ¢m =
¢m—1 if X € Owc()ISE,

° /fndS:eprfm\p and /F,C,.ndS:s,c,,mep
fe fe

mp

@ Then, if F; is the vector containing all the interior faces fluxes, one gets

mp

ACT:::ACFC*GC

° (Go)n= | ¢m (Fi.n—F,)dS Boundary contribution

Owe
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DG as a subcell Finite Volume Reconstructed fluxes through interior fluxes

Reconstructed fluxes through interior fluxes

@ Making use of the same graph Laplacian technique, we finally obtain

Fo=Fe— AL Go

@ We can rewrite this expression as
Fo=Fe—G(FS.n—Fp)

where G(.) is a correction function taking into account the jump
between the polynomial flux and the numerical flux on the cell boundary

@ Different choice in the correction term G(.) leads to different schemes
@ Forinstance, G(.) =0 leads to the spectral volume scheme of Z.J. Wang
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A posteriori subcell correction

e A posteriori subcell correction
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RKDG scheme

@ SSP Runge-Kutta: convex combinations of first-order forward Euler
@ For sake of clarity, we focus on forward Euler time stepping

Projection on subcells of RKDG solution
o uo"( Z uS" om(x)

o u" is unlquely defined by its N submean values @."

@ Recalling the definition of the projection matrix (Pc)mp = TSE] opdV,
m| J Sp,
Uf’n U1c,n
== P : = :
UIC\,‘I,kn U,fl;(n
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A posteriori subcell correction Detection

@ We assume that, for each cell, the {G5"}, are admissible
e Compute a candidate solution u™" from uf! through uncorrected DG

@ For each subcell, check if the submean values {75"'},, are OK

Physical admissibility detection (PAD)

@ Check if TS lies in an convex physical admissible set (maximum
principle for SCL, positivity of the pressure and density for Euler, . ..)

@ Check if there is any NaN values

Numerical admissibility detection (NAD)
@ Discrete maximum principle DMP on submean values:

min (Uv”)gv,f,’”“g max (U‘f)

veV(Ss) veVv(Ss)

@ V(Sg) set of neighboring subcells of S¢, including subcell S&,

@ This criterion needs to be relaxed to preserve smooth extrema

e — - - e
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A posteriori subcell correction Original correction basic principle

Fundamental principle

@ On non-admissible subcell boundaries

Substitute the reconstructed fluxes by more robust numerical fluxes

@ Recompute the non-admissible subcells, and their first neighbors

Examples of correction schemes

@ 1%-order Finite Volume scheme
@ 2"-order MUSCL scheme
@ (W)ENO methods
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Corrected reconstructed flux

////

) Structured subdivision. (e) Voronoi-type subdivision.

Figure : Original correction of the DG reconstructed flux
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A posteriori subcell correction Original correction basic principle

@ Compute the uncorrected DG candidate solution u"""

Q@ Project u®™" to get the submean values T5™""

@ Check TS™" through the troubled zone detection plus relaxation

Q If uS"" is admissible, go further in time. Otherwise, if S¢, or SpeVyis
either marked

= Ton gun
Frp = €5 IC Uy Uy Nmp
P P

@ Through the corrected reconstructed flux, recompute the submean values
for tagged subcells and their first neighbors

@ Returnto @

Conclusion
@ The correction only affects the DG solution at the subcell scale
@ The corrected scheme is conservative at the subcell level
@ In practice, few submean values need to be recomputed
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A posteriori subcell correction New correction principle

@ For non-linear problems, using very high-order schemes and coarse
meshes, the solution may remain a bit oscillatory at the subcell level

@ This is why we were previously considering, for k > 3, that if a subcell is
marked as bad then we also mark its first neighboring subcells

[5] F. VILAR, A Posteriori Correction of High-Order DG Scheme through
Subcell Finite Volume Formulation and Flux Reconstruction. JCP, 2018.

New correction principle
To avoid too much discrepancy between corrected and reconstructed fluxes

@ Wider subcell set to be corrected

@ Convex combination between 13t-order flux and the reconstructed flux

Fmp = Omp 5Cmp /ﬁvp}- (U;’n’ﬂgvnv nmp) +(1 - omp) FmP’

where 0, is a function of the distance to the non-admissible subcell

= = = = =
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A posteriori subcell correction New correction principle

Corrected reconstructed flux

2 |
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(f) Structured subdivision. (9) Voronoi-type subdivision.

Figure : New correction of the DG reconstructed flux
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Burgers equati
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Figure : Entropic weak solution: apparition of stationary shocks
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A posteriori subcell correction New correction principle

6th-order scheme on a 576 cells grid
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(a) Original correction (b) New correction

Figure : Comparison between original and new correction procedure:
corrected subcells
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A posteriori subcell correction New correction principle
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(a) Original correction (b) New correction

Figure : Comparison between original and new correction procedure:
corrected subcells
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A posteriori subcell correci New correction principle

6th-order scheme on a 576 cells grid
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(a) Original correction (b) New correction

Figure : Comparison between original and new correction procedure: subcell
mean values
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A posteriori subcell correction New correction principle

6th-order scheme on a 576 cells grid
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Figure : Comparison between original and new correction procedure:
submean values versus (x + y — 1) coordinate
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Numerical results

e Numerical results
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Numerical results 2D linear problems

e Numerical results
@ 2D linear problems
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Numerical results 2D linear advection

2D Linear advection

@ Jwu(x,t)+A.Vyu(x,t)=0 with A transport velocity

Linear advection of a crenel signal
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Figure : 6th-order APLSC-DG on a 576 cells mesh after one period
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Numerical results 2D linear advection

Linear advection equation of a crenel signal

exact solution
6th-order DG

A 6th-order APLSC-DG
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Figure : 6th-order solutions for the crenel advection case on 576 cells:
submean values versus (x + y — 1) coordinate
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Numerical results 2D linear advection

Influence of the subdivision

2NN

(a) Equidistant boundary points b) Gauss-Lobatto boundary points
(c) Equidistant boundary points d) P® Lagrangian mid-points

Figure : Examples of subdivisions for a triangular cell and a P> DG scheme
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Numerical results 2D linear advection

Linear advection equation of a crenel signal
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(a) Uniform structured subdivision (b) Non-uniform structured subdivision

Figure : 4th-order DG solutions for the crenel signal advection on 576 cells
after five periods: structured subdivision
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Numerical results 2D linear advection
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Figure : 4th-order DG solutions for the crenel signal advection on 576 cells
after five periods: polygonal subdivision
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Numerical results 2D linear advection

Linear advection equation of a crenel signal

exact solution
£ uniform structured subdivision . D
1r S uniform polygonal subdivision Y ‘| T

structured subdivision
polygonal subdivision
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Figure : 4th-order DG solutions for the crenel signal advection on 576 cells
using different cell subdivisions: submean values versus (x + y — 1)
coordinate
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Numerical results 2D linear advection

Linear advection equation of a crenel signal
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(a) Uniform structured subdivision (b) Non-uniform structured subdivision

Figure : 4th-order APLSC-DG solutions for the crenel signal advection on 576
cells after five periods: structured subdivision
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Numerical results 2D linear advection
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(a) Uniform polygonal subdivision (b) Non-uniform polygonal subdivision

Figure : 4th-order APLSC-DG solutions for the crenel signal advection on 576
cells after five periods: polygonal subdivision
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Numerical results 2D linear advection

Linear advection equation of a crenel signal

exact solution
uniform structured subdivision ¢
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Figure : 4th-order APLSC-DG solutions for the crenel signal advection on 576
cells using different cell subdivisions: submean values versus (x +y — 1)
coordinate
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Numerical results 2D solid body rotation

2D solid body rotation

@ du(x,t)+ A(x).Vxu(x,t)=0  with A(x)=(05-y, x—0.5)
@ u(x,0) = up(x)

Composite signal rotation: 6th-order APLSC-DG on 576 cells
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(a) Solution map (b) Corrected subcells
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Numerical results 2D solid body rotation

Rotation of a composite signal after 1 period
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Figure : 6th-order APLSC-DG solution for the rigid rotation case on 576 cells
after one full rotation: solution profiles
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\/

Rotation of a composite signal after 5 periods
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Figure : 4th-order APLSC-DG solutions for the rigid rotation case on 576 cells
after five full rotations: structured subdivision
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Numerical results 2D solid body rotation

Rotation of a composite signal after 5 periods

0.9 1

(a) Uniform polygonal subdivision (b) Non-uniform polygonal subdivision

Figure : 4th-order APLSC-DG solutions for the rigid rotation case on 576 cells
after five full rotations: polygonal subdivision
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Numerical results 2D solid body rotation

Rotation of a composite signal after 5 periods
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Figure : 4th-order APLSC-DG solutions for the rigid rotation case on 576 cells
after five full rotations: solution profiles
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Numerical results 2D non-linear problems

e Numerical results

@ 2D non-linear problems
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Numerical results 2D non-linear Burgers equation

2D non-linear Burgers equation

° Qu(X,t)+ Vy. F(ux,t))=0  with F(u)=1 (w2 ?)
@ u(x,0) = up(x)

Burgers equation with up(x, y) = sin(27 (x + y))

08 T T
6th-order DG »
08 o £Xact solution

08

(a) Solution map (b) Solution profile

Figure : 6th-order uncorrected DG on a 576 cells mesh at t = 0.5

- = = = Tyt
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Numerical results 2D non-linear Burgers equation

Burgers equation with up(x, y) = sin(27 (x + y))
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(b) Corrected subcells

(a) Solution map

Figure : 6th-order APLSC-DG on a 576 cells mesh at t = 0.5
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Burgers equation with uy(x, y) = sin(27 (x + y))

0.5

6th-order APLSC-DG  ©
exact solution

05 ! ! !
=il -0.5 0 0.5 1

Figure : 6th-order uncorrected DG on a 576 cells mesh at t = 0.5: submean
values versus (x + y — 1) coordinate
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Numerical results 2D non-linear Burgers equation

Burgers equation with uy(x, y) = sin(27 (x + y))
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(a) Uniform structured subdivision (b) Non-uniform structured subdivision

Figure : 4th-order APLSC-DG solutions for 2D Burgers equation on 242 cells
at t = 0.5: structured subdivision
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Numerical results 2D non-linear Burgers equation

Burgers equation with uy(x, y) = sin(27 (x + y))
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(a) Uniform polygonal subdivision (b) Non-uniform polygonal subdivision

Figure : 4th-order APLSC-DG solutions for 2D Burgers equation on 242 cells
at t = 0.5: polygonal subdivision
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Burgers equation with uy(x, y) = sin(27 (x + y))
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Figure : 4th-order APLSC-DG solutions for 2D Burgers equation on 242 cells
at t = 0.5: submean values versus (x + y — 1) coordinate
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Numerical results ear KPP problem

Kurganov, Petrova, Popov (KPP) non-convex flux equati

@ du(x,t)+ Vx. F(u(x,t))=0  with F(u) = (sinu, cosu)'
@ u(x,0) = up(x)

(a) Attime t =0 (b) Attime t = 1
Figure : 6th-order uncorrected DG solution on a 1054 cells mesh

= A

Francois Vilar cal Subcell Correction (APLSC) October 2022 50/65



Numerical results 2D non-linear KPP problem

KPP non-convex flux problem
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Figure : 6th-order APLSC-DG solution on a 1054 cells mesh
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2D non-linear KPP problem

Numerical results

(b) Corrected subcells
6670 cells mesh

DG solution on a
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Numerical results 2D non-linear KPP problem

KPP non-convex flux problem
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(a) Structured subdivision
Figure : 4th-order APLSC-DG solution on a 1054 cells mesh: subdivision
comparison
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Numerical results non-linear Euler compressible gas dynamics system

2D non-linear Euler compressible gas dynamics equations

@ OV+Vi.F(V)=0
P
eV=|gq conservative variables
E
q
(2
e F(V)= % +pl flux function
q
E+p)—
(ERERIE
_ (v _1lal? -
ep=pV)=(v—1) | E 5, equation of state

APLSC-DG scheme property
@ Positivity of the density and internal energy, at the subcell scale
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Numerical results 2D non-linear Euler compressible gas dynamics system
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(a) Density map (b) Corrected subcells
Figure : 6th-order APLSC-DG solution on a 230 cells mesh
v
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Numerical results -linear Euler compressible gas dynamics system

Sod shock tube problem in cylindrical geomet
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Figure : 6th-order APLSC-DG solution on a 230 cells: density submean
values

= = = =

Francois Vilar A Posteriori Local Subcell Correction (APLSC) October 2022 56/65



Numerical results 2D non-linear Euler compressible gas dynamics system

Sedov point blast problem in cylindrical geometry

@8-.. aco) (b) Density profile
a) Energy map
Figure : 6th-order APLSC-DG on a 271 cells mesh at t = 1
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Numerical results 2D non-linear Euler compressible gas dynamics system

A Mach 3 wind tunnel with a step
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Figure : 6th-order APLSC-DG solution for the facing step problem on 680
cells at t = 4: submean density map
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Numerical results 2D non-linear Shallow-Water system of equations

2D non-linear shallow water equations - prebalanced formulation

® &V + Vy.F(V,b) = B(V,V,b)

|

o V= <n> conservative variables ‘ -
q
@ B(V,0xb) = source term
( X ) (—ganb> 0
q
@ F(V,b) = ® 1 flux function
%gg (P —2nb) Iy —

APLSC-DG scheme properties
@ Positivity-preservation of the water height H = n — b, at the subcell scale

@ Well-balancing property, at the subcell scale

— —_ = — SaRent
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Numerical results 2D non-linear Shallow-Water system of equations

Well-balancing property

free surface (blue)

bathymetry (white)

Figure : 3rd-order APLSC-DG on a 5000 cells at t = 50: free surface elevation

3
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Numerical results 2D non-linear Shallow-Water system of equations

Dam break problem in cylindrical geometry

free surface
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(a) Solution map (b) Solution profile

Figure : 3rd-order APLSC-DG on a 2676 cells mesh at t = 0.045: free surface
elevation
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Numerical results 2D non-linear Shallow-Water system of equations

Rock-wave interaction

(=)o)

Figure : 3rd-order APLSC-DG on a 7000 cells mesh
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Conclusion

e Conclusion
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Conclusion What we have done so far

A Posteriori Local Subcell Correction (APLSC) technique
@ Reformulate DG schemes as subgrid FV-like schemes

@ Design an original local subcell correction:
@ preserving the scheme conservation at the subcell scale

@ preserving the very accurate subcell resolution of DG schemes
@ ensuring a maximum or positivity preserving principle at the subcell scale
e reducing significantly the apparition of spurious oscillations

e limiting the correction computational effort by not recomputing solution in
admissible subcell not lying in the vicinity of a troubled subcell

Applications

@ Scalar conservation laws (1D and 2D)

@ Euler compressible gas dynamics system (1D and 2D)
@ Non-linear shallow water (NSW) system (1D and 2D) Ali Haidar

@ NSW interactions with a floating object in the
arbitrary-Lagrangian-Eulerian (ALE) framework (1D) Ali Haidar

s
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Conclusion Ongoing and future projects

Ongoing work

@ Application to 2D total Lagrangian hydrodynamics on curvilinear grids

@ Maximum principle DG scheme through subcell reconstructed FCT

Future work

@ DoF based adaptive DG scheme through subcell Finite Volume
formulation in collaboration with Raphaél Loubére

@ Application to 2D hydrodynamics and solid dynamics in the ALE
framework in collaboration with Walter Boscheri

@ 2D NSW interactions with a floating object in the ALE framework in
collaboration with Fabien Marche
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Conclusion References
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schemes through Finite Volume reformulation on unstructured grids.
Article finished, yet to be submitted!!
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Conclusion

NAD: neighboring subcells set

References
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(a) 4th-order, polygonal subdivision (b) 6th-order, structured subdivision
Figure : Neighboring subcells set for the numerical admissibility criterion
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Conclusion References

: neighboring subcells set
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(a) 4th-order, polygonal subdivision (b) 6th-order, structured subdivision

Figure : Neighboring subcells set for the numerical admissibility criterion
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Conclusion References

Cell subdivision: condition number of the projection matrix P,

PO | P! P2 P3

Unif. struct. subdiv. 1 4 10.91 | 31.75

Non-unif. struct. subdiv. 1 4 9.52 | 29.28

Unif. polyg. subdiv. 11287 | 873 | 27.89

Non-unif. polyg. subdiv. || 1 | 2.87 | 8.19 | 26.94

Table: Projection matrix condition number for different orders and subdivisions
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